Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 6(12): e05773, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33376823

RESUMEN

The development of central nervous system is a highly coordinated and complex process. Any alteration of this process can lead to disturbances in the structure and function of the brain, which can cause deficits in neurological development, resulting in neurodevelopmental disorders, including, for example, autism or attention-deficit hyperactivity disorder. Exposure to certain chemicals during the fetal period and childhood is known to cause developmental neurotoxicity and has serious consequences that persist into adult life. For regulatory purposes, determination of the potential for developmental neurotoxicity is performed according the OECD Guideline 426, in which the test substance is administered to animals during gestation and lactation. However, these animal models are expensive, long-time consuming and may not reflect the physiology in humans; that makes it an unsustainable model to test the large amount of existing chemical products, hence alternative models to the use of animals are needed. One of the most promising methods is based on the use of stem cell technology. Stem cells are undifferentiated cells with the ability to self-renew and differentiate into more specialized cell types. Because of these properties, these cells have gained increased attention as possible therapeutic agents or as disease models. Here, we provide an overview of the current models both animal and cellular, available to study developmental neurotoxicity and review in more detail the usefulness of human stem cells, their properties and how they are becoming an alternative to evaluate and study the mechanisms of action of different environmental toxicants.

2.
Sci Total Environ ; 683: 445-454, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31136966

RESUMEN

Chlorpyrifos (CPF) is an organophosphate pesticide widely used in agriculture, whose traditional and well-known mechanism of action is the inhibition of the enzyme Acetylcholinesterase (AChE). Subacute exposures to CPF have been associated with alterations different from the inhibition of AChE. Because of the vulnerability of the developing nervous system, prenatal and early postnatal exposures are of special concern. Human neural stem cells (hNSC) provide the opportunity to study early stages of neural development and may be a valuable tool for developmental neurotoxicology (DNT). In the current work, the cell line hNS1 was used as a model system with the aim of validating this cell line as a reliable testing method. To evaluate the effects of CPF on early developmental stages, hNS1 cells were exposed to different concentrations of the pesticide and cell death, proliferation and cell fate specification were analyzed under differentiation conditions. Since hNS1 cells responded to CPF in a similar way to other human cell lines, we consider it may be a valid model for DNT chemical assessment. CPF induced apoptotic cell death only at the highest doses tested, suggesting that it is not toxic for the specific developmental stage here addressed under short term exposure. In addition, the higher doses of CPF promoted the generation of astroglial cells, without affecting neurogenesis.


Asunto(s)
Cloropirifos/toxicidad , Insecticidas/toxicidad , Humanos , Células-Madre Neurales , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...