Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hypertens Res ; 47(1): 46-54, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37710035

RESUMEN

Hypertension is well-known to often coexist with diabetes mellitus (DM) in humans. Treatment with sodium-glucose cotransporter 2 (SGLT2) inhibitors has been shown to decrease both the blood glucose and the blood pressure (BP) in such patients. Some reports show that SGLT2 inhibitors improve the BP by decreasing the activities of the sympathetic nervous system. Therefore, we hypothesized that SGLT2 inhibitors might alleviate hypertension via attenuating sympathetic nervous activity. Combined SGLT2/SGLT1 inhibitor therapy is also reported as being rather effective for decreasing the BP. In this study, we examined the effects of SGLT2 and SGLT1 inhibitors on the bulbospinal neurons of the rostral ventrolateral medulla (RVLM). To investigate whether bulbospinal RVLM neurons are sensitive to SGLT2 and SGLT1 inhibitors, we examined the changes in the neuronal membrane potentials (MPs) of these neurons using the whole-cell patch-clamp technique during superfusion of the cells with the SGLT2 and SGLT1 inhibitors. A brainstem-spinal cord preparation was used for the experiments. Our results showed that superfusion of the RVLM neurons with SGLT2 and SGLT1 inhibitor solutions induced hyperpolarization of the neurons. Histological examination revealed the presence of SGLT2s and SGLT1s in the RVLM neurons, and also colocalization of SGLT2s with SGLT1s. These results suggest the involvement of SGLT2s and SGLT1s in regulating the activities of the RVLM neurons, so that SGLT2 and SGLT1 inhibitors may inactivate the RVLM neurons hyperpolarized by empagliflozin. SGLT2 and SGLT1 inhibitors suppressed the activities of the bulbospinal RVLM neurons in the brainstem-spinal preparations, suggesting the possibilities of lowering BP by decreasing the sympathetic nerve activities. RVLM, rostral ventrolateral medulla. IML, intralateral cell column. aCSF, artificial cerebrospinal fluid.


Asunto(s)
Hipertensión , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Ratas , Animales , Ratas Wistar , Transportador 2 de Sodio-Glucosa , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Neuronas , Bulbo Raquídeo , Sistema Nervioso Simpático
2.
J Physiol Sci ; 73(1): 23, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803279

RESUMEN

A metabolite of acetaminophen, AM404, which is an anandamide transporter inhibitor, induces analgesia mainly via activation of transient receptor potential channel 1 in the spinal cord, although the role of cannabinoid receptors remains to be studied. The ventral root reflex response induced by stimulation of the dorsal root in in vitro preparations of rat spinal cord is useful to assess the effect of analgesics. We analyzed the effects of AM404 and cannabinoid receptor antagonist AM251 on reflex responses in lumbar spinal cord preparations from newborn rats and found that the amplitude of the slow ventral root potential after administration of 10 µM AM404 was not significantly changed, whereas 10 µM AM251 significantly increased the amplitude. Administration of the cannabinoid receptor 1 agonist WIN55,212-2 (10 µM) did not significantly affect the reflex response. We suggest that endogenous cannabinoids in the spinal cord are involved in the antinociceptive mechanism through suppressive effects.


Asunto(s)
Nocicepción , Médula Espinal , Ratas , Animales , Animales Recién Nacidos , Ratas Wistar , Receptores de Cannabinoides/metabolismo
4.
Pflugers Arch ; 475(11): 1301-1314, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37707585

RESUMEN

Aconitine is a sodium channel opener, but its effects on the respiratory center are not well understood. We investigated the dose-dependent effects of aconitine on central respiratory activity in brainstem-spinal cord preparations isolated from newborn rats. Bath application of 0.5-5 µM aconitine caused an increase in respiratory rhythm and decrease in the inspiratory burst amplitude of the fourth cervical ventral root (C4). Separate application of aconitine revealed that medullary neurons were responsible for the respiratory rhythm increase, and neurons in both the medulla and spinal cord were involved in the decrease of C4 amplitude by aconitine. A local anesthetic, lidocaine (100 µM), or a voltage-dependent sodium channel blocker, tetrodotoxin (0.1 µM), partially antagonized the C4 amplitude decrease by aconitine. Tetrodotoxin treatment tentatively decreased the respiratory rhythm, but lidocaine tended to further increase the rhythm. Treatment with 100 µM riluzole or 100 µM flufenamic acid, which are known to inhibit respiratory pacemaker activity, did not reduce the respiratory rhythm enhanced by aconitine + lidocaine. The application of 1 µM aconitine depolarized the preinspiratory, expiratory, and inspiratory motor neurons. The facilitated burst rhythm of inspiratory neurons after aconitine disappeared in a low Ca2+/high Mg2+ synaptic blockade solution. We showed the dose-dependent effects of aconitine on respiratory activity. The antagonists reversed the depressive effects of aconitine in different manners, possibly due to their actions on different sites of sodium channels. The burst-generating pacemaker properties of neurons may not be involved in the generation of the facilitated rhythm after aconitine treatment.


Asunto(s)
Aconitina , Tronco Encefálico , Animales , Ratas , Animales Recién Nacidos , Aconitina/farmacología , Tetrodotoxina/farmacología , Ratas Wistar , Bulbo Raquídeo/fisiología , Médula Espinal , Lidocaína/farmacología
5.
Neuroscience ; 528: 89-101, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37557948

RESUMEN

Proteinase-activated receptor-1 (PAR1) is expressed in astrocytes of various brain regions, and its activation is involved in the modulation of neuronal activity. Here, we report effects of PAR1 selective agonist TFLLR on respiratory rhythm generation in brainstem-spinal cord preparations. Preparations were isolated from newborn rats (P0-P4) under deep isoflurane anesthesia and were transversely cut at the rostral medulla. Preparations were superfused with artificial cerebrospinal fluid (25-26 °C), and inspiratory C4 ventral root activity was monitored. The responses to TFLLR of cells close to the cut surface were detected by calcium imaging or membrane potential recordings. Application of 10 µM TFLLR (4 min) induced a rapid and transient increase of calcium signal in cells of the ventrolateral respiratory regions of the medulla. More than 88% of responding cells (223/254 cells from 13 preparations) were also activated by low (0.2 mM) K+ solution, suggesting that they were astrocytes. Immunohistochemical examination demonstrated that PAR1 was expressed on many astrocytes. Respiratory-related neurons in the medulla were transiently hyperpolarized (-1.8 mV) during 10 µM TFLLR application, followed by weak membrane depolarization after washout. C4 burst rate decreased transiently in response to application of TFLLR, followed by a slight increase. The inhibitory effect was partially blocked by 50 µM theophylline. In conclusion, activation of astrocytes via PAR1 resulted in a decrease of inspiratory C4 burst rate in association with transient hyperpolarization of respiratory-related neurons. After washout, slow and weak excitatory responses appeared. Adenosine may be partially involved in the inhibitory effect of PAR1 activation.


Asunto(s)
Calcio , Receptor PAR-1 , Animales , Ratas , Animales Recién Nacidos , Ratas Wistar , Tronco Encefálico/fisiología , Bulbo Raquídeo , Médula Espinal
6.
Biomed Res ; 44(2): 41-49, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37005282

RESUMEN

Seizure-like burst activities are induced by blockade of GABAA and/or glycine receptors in various spinal ventral roots of brainstem-spinal cord preparation from neonatal rodents. We found that this is not applicable to the phrenic nerve and that a new inhibitory descending pathway may suppress seizure-like activity in the phrenic nerve. Experiments were performed in brainstem-spinal cord preparation from newborn rats (age: 0-1 day). Left phrenic nerve and right C4 activities were recorded simultaneously. When GABAA and glycine receptors were blocked by 10 µM bicuculline and 10 µM strychnine (Bic+Str), seizure-like burst activities appeared in the fourth cervical ventral root (C4) but not the phrenic nerve. After making a transverse section at C1, the inspiratory burst activity disappeared from both C4 and the phrenic nerve, whereas seizure-like activity appeared in both nerves. We hypothesized that inhibitory descending pathways other than those via GABAA and/or glycine receptors (from the medulla to the spinal cord) work to avoid disturbance of regular respiratory-related diaphragm contraction by seizure-like activity. We found that cannabinoid receptor antagonist, AM251 was effective for the induction of seizure-like activity by Bic+Str in the phrenic nerve in brainstem-spinal cord preparation. Cannabinoid receptors may be involved in this descending inhibitory system.


Asunto(s)
Receptores de Glicina , Médula Espinal , Animales , Ratas , Animales Recién Nacidos , Receptores de Cannabinoides , Bicuculina/farmacología , Estricnina/farmacología , Convulsiones/tratamiento farmacológico , Nervio Frénico/fisiología
7.
Pflugers Arch ; 475(2): 233-248, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36289078

RESUMEN

One side effect of cisplatin, a cytotoxic platinum anticancer drug, is peripheral neuropathy; however, its central nervous system effects remain unclear. We monitored respiratory nerve activity from the C4 ventral root in brainstem and spinal cord preparations from neonatal rats (P0-3) to investigate its central effects. Bath application of 10-100 µM cisplatin for 15-20 min dose-dependently decreased the respiratory rate and increased the amplitude of C4 inspiratory activity. These effects were not reversed after washout. In separate perfusion experiments, cisplatin application to the medulla decreased the respiratory rate, and application to the spinal cord increased the C4 burst amplitude without changing the burst rate. Application of other platinum drugs, carboplatin or oxaliplatin, induced no change of respiratory activity. A membrane potential analysis of respiratory-related neurons in the rostral medulla showed that firing frequencies of action potentials in the burst phase tended to decrease during cisplatin application. In contrast, in inspiratory spinal motor neurons, cisplatin application increased the peak firing frequency of action potentials during the inspiratory burst phase. The increased burst amplitude and decreased respiratory frequency were partially antagonized by riluzole and picrotoxin, respectively. Taken together, cisplatin inhibited respiratory rhythm via medullary inhibitory system activation and enhanced inspiratory motor nerve activity by changing the firing property of motor neurons.


Asunto(s)
Cisplatino , Frecuencia Respiratoria , Ratas , Animales , Animales Recién Nacidos , Cisplatino/farmacología , Ratas Wistar , Platino (Metal) , Bulbo Raquídeo/fisiología , Médula Espinal , Neuronas Motoras , Respiración
8.
J Physiol Sci ; 72(1): 24, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192688

RESUMEN

We previously demonstrated that in an isolated brainstem-spinal cord preparation from neonatal rats, a local bath application of strychnine (a broad antagonist of glycine and GABAA receptors) to the spinal cord enhances thoracic inspiratory motor activity. Herein, to investigate the involvement of the inspiratory spinal interneurons that provide excitatory input to the motoneuron, we conducted calcium imaging using this preparation. Oregon Green 488 BAPTA-1 AM, a fluorescent calcium indicator, was injected into the ventromedial surface of the thoracic cord. In all cells that showed inspiratory-related fluorescence changes > 2% of the baseline fluorescence intensity, the inspiratory-related fluorescence change decreased when the focal depth was deepened. The application of strychnine to the spinal cord increased the inspiratory-related intracellular calcium rise in these cells. These results suggest that the enhancement of inspiratory interneuron activity could be involved in this enhancement of inspiratory motor activity.


Asunto(s)
Glicina , Receptores de GABA-A , Animales , Animales Recién Nacidos , Calcio/metabolismo , Glicina/farmacología , Ratas , Médula Espinal/metabolismo , Estricnina/farmacología , Ácido gamma-Aminobutírico
9.
Biomed Res ; 43(4): 127-135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35989288

RESUMEN

Natriuretic peptides (NPs) are a family of peptide hormones produced in cardiac muscle cells and consist mainly of three types: atrial NP (ANP), B-type (or brain) NP (BNP), and C-type NP. We herein report the effects of ANP and BNP on central respiratory activity in brainstem-spinal cord preparation isolated from newborn rats. Bath application of these peptides (100 nM) induced a weak transient depression of the respiratory rhythm followed by recovery. Respiratory-related neurons in the rostral ventrolateral medulla showed a tendency for transient hyperpolarization followed by recovery during the application of ANP or BNP. The application of a membrane-permeable cGMP, 8-Br-cGMP (10 or 20 µM), did not induce significant effects on respiratory rhythm, suggesting no involvement of guanylyl cyclase in effects of ANP or BNP. We also examined effects of BNP on respiratory depression induced by the sedative dexmedetomidine, which exerts an inhibitory influence on respiratory rhythm. When pretreated with 50 nM BNP, the inhibitory effect of 100 nM dexmedetomidine was significantly reduced. Our findings suggest that ANP and BNP act as mild excitatory agents with sustained effects on respiratory rhythm after an initial transient depression.


Asunto(s)
Factor Natriurético Atrial , Dexmedetomidina , Animales , Animales Recién Nacidos , Factor Natriurético Atrial/farmacología , Tronco Encefálico/metabolismo , Péptido Natriurético Encefálico/metabolismo , Ratas , Médula Espinal/metabolismo
10.
Brain Res ; 1795: 148061, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36037880

RESUMEN

Suvorexant (Belsomra(R)), a dual orexin receptor antagonist widely used in the treatment of insomnia, inhibits the arousal system in the brain. However, the drug's ventilatory effects have not been fully explored. This study aims to investigate the expression of orexin receptors in respiratory neurons and the effects of suvorexant on ventilation. Immunohistology of brainstem orexin receptor OX2R expression was performed in adult mice (n = 4) in (1) rostral ventral respiratory group (rVRG) neurons projecting to the phrenic nucleus (PhN) retrogradely labeled by Fluoro-Gold (FG) tracer, (2) neurons immunoreactive for paired like homeobox 2b (Phox2b) in the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN), and (3) neurons immunoreactive for neurokinin 1 receptor (NK1R) and somatostatin (SST) in the preBötzinger complex (preBötC). Additionally, we measured in vivo ventilatory responses to hyperoxic hypercapnia (5% CO2) and hypoxia (10% O2) before and after suvorexant pretreatment (10 and cumulative 100 mg/kg) in unrestrained mice (n = 10) in a body plethysmograph. We found the OX2R immunoreactive materials in pFRG/RTN Phox2b and preBötC NK1R/SST immunoreactive neurons but not in FG-labeled rVRG neurons, which suggests the involvement of orexin in respiratory control. Further, suvorexant expressly suppressed the hypercapnic ventilatory augmentation, otherwise unaffecting ventilation. Central orexin is involved in shaping the hypercapnic ventilatory chemosensitivity. Suppression of hypercapnic ventilatory augmentation by the orexin receptor antagonist suvorexant calls for caution in its use in pathologies that may progress to hypercapnic respiratory failure, or sleep-disordered breathing. Clinical trials are required to explore the role of targeted pharmacological inhibition of orexin in ventilatory pathologies.


Asunto(s)
Hipercapnia , Antagonistas de los Receptores de Orexina , Animales , Azepinas , Dióxido de Carbono/metabolismo , Hipercapnia/metabolismo , Ratones , Antagonistas de los Receptores de Orexina/farmacología , Receptores de Orexina , Orexinas , Receptores de Neuroquinina-1/metabolismo , Somatostatina , Factores de Transcripción/metabolismo , Triazoles
11.
Sci Adv ; 8(12): eabm1444, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333571

RESUMEN

As blood oxygenation decreases (hypoxemia), mammals mount cardiorespiratory responses, increasing oxygen to vital organs. The carotid bodies are the primary oxygen chemoreceptors for breathing, but sympathetic-mediated cardiovascular responses to hypoxia persist in their absence, suggesting additional high-fidelity oxygen sensors. We show that spinal thoracic sympathetic preganglionic neurons are excited by hypoxia and silenced by hyperoxia, independent of surrounding astrocytes. These spinal oxygen sensors (SOS) enhance sympatho-respiratory activity induced by CNS asphyxia-like stimuli, suggesting they bestow a life-or-death advantage. Our data suggest the SOS use a mechanism involving neuronal nitric oxide synthase 1 (NOS1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). We propose NOS1 serves as an oxygen-dependent sink for NADPH in hyperoxia. In hypoxia, NADPH catabolism by NOS1 decreases, increasing availability of NADPH to NOX and launching reactive oxygen species-dependent processes, including transient receptor potential channel activation. Equipped with this mechanism, SOS are likely broadly important for physiological regulation in chronic disease, spinal cord injury, and cardiorespiratory crisis.

12.
Neurosci Res ; 178: 41-51, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34973291

RESUMEN

The paired-like homeobox 2b gene (Phox2b) is critical for the development of the autonomic nervous system. We have previously demonstrated the distinct characteristics of Phox2b-expressing (Phox2b+) neurons in the reticular formation dorsal to the trigeminal motor nucleus (RdV), which are likely related to jaw movement regulation. In this study, we focused on Phox2b+ neurons in the rostral parvocellular reticular formation (rPCRt), a critical region for controlling orofacial functions, using 2-11-day-old Phox2b-EYFP rats. Most Phox2b+ rPCRt neurons were glutamatergic, but not GABAergic or glycinergic. Approximately 65 % of Phox2b+ rPCRt neurons fired at a low frequency, and approximately 24 % of Phox2b+ rPCRt neurons fired spontaneously, as opposed to Phox2b+ RdV neurons. Stimulation of the RdV evoked inward postsynaptic currents in more than 50 % of Phox2b+ rPCRt neurons, while only one Phox2b+ rPCRt neuron responded to stimulation of the nucleus of the solitary tract. Five of the 10 Phox2b+ neurons sent their axons that ramified within the trigeminal motor nucleus (MoV). Of these, the axons of the two neurons terminated within both the MoV and rPCRt. Our findings suggest that Phox2b+ rPCRt neurons have distinct electrophysiological and synaptic properties that may be involved in the motor control of feeding behavior.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Neuronas , Formación Reticular , Factores de Transcripción/metabolismo , Animales , Axones/metabolismo , Fenómenos Electrofisiológicos , Neuronas/fisiología , Ratas , Formación Reticular/metabolismo , Factores de Transcripción/genética
13.
Neurosci Lett ; 771: 136421, 2022 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-34968723

RESUMEN

Astrocytes are thought to play a crucial role in providing structure to the spinal cord and maintaining efficient synaptic function and metabolism because their fine processes envelop the synapses of neurons and form many neuronal networks within the central nervous system (CNS). To investigate whether putative astrocytes and putative neurons distributed on the ventral horn play a role in the modulation of lumbar locomotor central pattern generator (CPG) networks, we used extracellular recording and optical imaging techniques and recorded the neural output from the left L5 ventral root and the calcium activity of putative astrocytes and neurons in the L5 ventral horn at the same time when activating an isolated L1-L5 spinal cord preparation from rats aged 0-2 days. Optical measurements detected cells that showed a fluorescence intensity change under all experimental conditions, namely, (1) 5-HT + NMDA, (2) TTX, and (3) TTX + Low K+. These cells were semiautomatically identified using an in-house MATLAB-based program, as putative astrocytes and neurons according to the cell classification, i.e., increased or decreased fluorescence intensity change (ΔF/F0), and subjective judgment based on their soma size. Coherence and its phase were calculated according to the calcium activity of the putative astrocytes and putative neurons, and neural output was calculated during fictive locomotion with in-house MATLAB-based programs. We found that the number of putative astrocytes activated by applying low K+ tends not to differ from that activated by applying the protease-activated receptor 1 (PAR1) selective agonist TFLLR-NH2 (TFLLR). Moreover, the calcium activity of several putative astrocytes and neurons synchronized with locomotor-like activity at a frequency range below 0.5 Hz and the time lag between peaks of cellular calcium activity and locomotor-like activity ranged from -1000 to + 1000 ms. These findings presumably indicates that these putative astrocytes and neurons in the left L5 ventral horn require -1000 to + 1000 ms to communicate with lumbar CPG networks and maintain efficient synaptic function and metabolism in activated lumbar CPG networks. This finding suggests the possibility that putative astrocytic and neuronal cells in the L5 ventral horn contribute to generating the rhythms and patterns of locomotor-like activity by activated CPG networks in the first to fifth lumbar spinal cord.


Asunto(s)
Células del Asta Anterior/metabolismo , Astrocitos/metabolismo , Señalización del Calcio , Generadores de Patrones Centrales/metabolismo , Locomoción , Animales , Células del Asta Anterior/efectos de los fármacos , Células del Asta Anterior/fisiología , Astrocitos/efectos de los fármacos , Astrocitos/fisiología , Generadores de Patrones Centrales/efectos de los fármacos , Generadores de Patrones Centrales/fisiología , N-Metilaspartato/metabolismo , Oligopéptidos/farmacología , Potasio/metabolismo , Ratas , Ratas Wistar , Serotonina/metabolismo , Tetrodotoxina/farmacología
14.
Front Physiol ; 12: 757731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690820

RESUMEN

Acute hypoxia increases ventilation. After cessation of hypoxia loading, ventilation decreases but remains above the pre-exposure baseline level for a time. However, the mechanism of this post-hypoxic persistent respiratory augmentation (PHRA), which is a short-term potentiation of breathing, has not been elucidated. We aimed to test the hypothesis that astrocytes are involved in PHRA. To this end, we investigated hypoxic ventilatory responses by whole-body plethysmography in unanesthetized adult mice. The animals breathed room air, hypoxic gas mixture (7% O2, 93% N2) for 2min, and again room air for 10min before and after i.p. administration of low (100mg/kg) and high (300mg/kg) doses of arundic acid (AA), an astrocyte inhibitor. AA suppressed PHRA, with the high dose decreasing ventilation below the pre-hypoxic level. Further, we investigated the role of the astrocytic TRPA1 channel, a putative ventilatory hypoxia sensor, in PHRA using astrocyte-specific Trpa1 knockout (asTrpa1 -/-) and floxed Trpa1 (Trpa1 f/f) mice. In both Trpa1 f/f and asTrpa1 -/- mice, PHRA was noticeable, indicating that the astrocyte TRPA1 channel was not directly involved in PHRA. Taken together, these results indicate that astrocytes mediate the PHRA by mechanisms other than TRPA1 channels that are engaged in hypoxia sensing.

15.
Brain Res Bull ; 177: 129-142, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34563634

RESUMEN

There has been a long-standing controversy regarding the physiological role of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) in sleep/wake architecture. Some studies have reported that 5-HT acts as a sleep-promoting agent, but several studies have suggested that DRN 5-HT neurons function predominantly to promote wakefulness and inhibit rapid eye movement (REM) sleep. Furthermore, recent studies have reported that there is a clear neurobiological difference between a waking state that includes alertness and active exploration (i.e., active wakefulness) and a waking state that is devoid of locomotion (i.e., quiet wakefulness). These states have also been shown to differ clinically in terms of memory consolidation. However, the effects of 5-HT neurons on the regulation of these two different waking states have not been fully elucidated. In the present study, we attempted to examine the physiological role of DRN 5-HT neurons in various sleep/wake states using optogenetic methods that allowed manipulation of cell-type specific neuronal activation with high temporal and anatomical precision. We crossed TPH2-tTA and TetO-ChR2(C128S) mice to obtain mice with channelrhodopsin-2 (ChR2) [C128S]-expressing central 5-HT neurons, and we activated DRN-5HT neurons or medullary 5-HT neurons. Optogenetic activation of DRN 5-HT neurons caused rapid transition from non-REM sleep to active wakefulness, not quiet wakefulness, whereas activation of medullary 5-HT neurons did not appear to affect sleep/wake states or locomotor activity. Our results may shed light on the physiological role of DRN 5-HT neurons in sleep/wake architecture and encourage further investigations of the cortical functional connectivity involved in sleep/wake state regulation.


Asunto(s)
Núcleo Dorsal del Rafe , Vigilia , Animales , Ratones , Neuronas/fisiología , Optogenética , Serotonina/fisiología , Sueño
16.
Respir Physiol Neurobiol ; 293: 103737, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34229065

RESUMEN

Effects of acetylcholine (ACh) on respiratory activity have been an intriguing theme especially in relation to central chemoreception and the control of hypoglossal nerve activity. We studied the effects of ACh on hypoglossal and phrenic (C4) nerve activities and inspiratory and pre-inspiratory neurons in the rostral ventrolateral medulla in brainstem-spinal cord preparations from newborn rats. ACh application increased respiratory rhythm, decreased inspiratory hypoglossal and C4 nerve burst amplitude, and enhanced pre-inspiratory hypoglossal activity. ACh induced membrane depolarization of pre-inspiratory neurons that might be involved in facilitation of respiratory rhythm by ACh. Effects of ACh on hypoglossal and C4 nerve activity were partially reversed by a nicotinic receptor blocker, mecamylamine. Further application of a muscarinic receptor antagonist, oxybutynin, resulted in slight increase of hypoglossal (but not C4) burst amplitude. Thus, ACh induced different effects on hypoglossal and C4 nerve activity in the brainstem-spinal cord preparation.


Asunto(s)
Acetilcolina/farmacología , Tronco Encefálico/efectos de los fármacos , Nervio Hipogloso/efectos de los fármacos , Nervio Frénico/efectos de los fármacos , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Animales , Animales Recién Nacidos , Células Quimiorreceptoras/efectos de los fármacos , Núcleos Talámicos Intralaminares/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Ratas , Ratas Wistar
17.
Front Physiol ; 12: 645904, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841182

RESUMEN

It is supposed that the nucleus of the solitary tract (NTS) in the dorsal medulla includes gas sensor cells responsive to hypercapnia or hypoxia in the central nervous system. In the present study, we analyzed cellular responses to hypercapnia and hypoxia in the NTS region of newborn rat in vitro preparation. The brainstem and spinal cord were isolated from newborn rat (P0-P4) and were transversely cut at the level of the rostral area postrema. To detect cellular responses, calcium indicator Oregon Green was pressure-injected into the NTS just beneath the cut surface of either the caudal or rostral block of the medulla, and the preparation was superfused with artificial cerebrospinal fluid (25-26°C). We examined cellular responses initially to hypercapnic stimulation (to 8% CO2 from 2% CO2) and then to hypoxic stimulation (to 0% O2 from 95% O2 at 5% CO2). We tested these responses in standard solution and in two different synapse blockade solutions: (1) cocktail blockers solution including bicuculline, strychnine, NBQX and MK-801 or (2) TTX solution. At the end of the experiments, the superfusate potassium concentration was lowered to 0.2 from 3 mM to classify recorded cells into neurons and astrocytes. Excitation of cells was detected as changes of fluorescence intensity with a confocal calcium imaging system. In the synaptic blockade solutions (cocktail or TTX solution), 7.6 and 8% of the NTS cells responded to hypercapnic and hypoxic stimulation, respectively, and approximately 2% of them responded to both stimulations. Some of these cells responded to low K+, and they were classified into astrocytes comprising 43% hypercapnia-sensitive cells, 56% hypoxia-sensitive cells and 54% of both stimulation-sensitive cells. Of note, 49% of the putative astrocytes identified by low K+ stimulation were sensitive to hypercapnia, hypoxia or both. In the presence of a glia preferential blocker, 5 mM fluoroacetate (plus 0.5 µM TTX), the percentage of hypoxia-sensitive cells was significantly reduced compared to those of all other conditions. This is the first study to reveal that the NTS includes hypercapnia and hypoxia dual-sensitive cells. These results suggest that astrocytes in the NTS region could act as a central gas sensor.

18.
Adv Exp Med Biol ; 1293: 449-458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398832

RESUMEN

Using an optogenetic approach, we analyzed a local neuron network of the respiratory center in the medulla of a brainstem-spinal cord preparation isolated from neonatal rat. We developed a transgenic (Tg) rat line in which Phox2b-positive cells expressed archaerhodopsin-3 (Arch) or one of the step-function channelrhodopsin variants (ChRFR) under the control of Phox2b promoter-enhancer regions. Then, in en bloc preparations from 0- to 2-day-old Tg neonatal rats, we analyzed membrane potential changes of medullary respiratory-related neurons in response to photostimulation of the rostral ventral medulla. The photostimulation-induced inhibition or facilitation of the respiratory rhythm in Arch-expressing or ChRFR-expressing Tg rat preparations, respectively. Selective photoactivation of Phox2b-positive neurons expressing ChRFR in the rostral ventrolateral medulla of a neonatal rat en bloc preparation induced membrane potential changes of respiratory-related neurons that were dependent on heterogeneous properties of synaptic connections in the respiratory center. We concluded that the optogenetic approach is a powerful method of verifying a hypothetical model of local networks among respiratory-related neurons in the rostral ventrolateral medulla of neonatal rat.


Asunto(s)
Optogenética , Centro Respiratorio , Animales , Animales Recién Nacidos , Channelrhodopsins , Bulbo Raquídeo , Neuronas , Ratas , Respiración
19.
Sci Rep ; 10(1): 13325, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770006

RESUMEN

Psychological stress activates the hypothalamus, augments the sympathetic nervous output, and elevates blood pressure via excitation of the ventral medullary cardiovascular regions. However, anatomical and functional connectivity from the hypothalamus to the ventral medullary cardiovascular regions has not been fully elucidated. We investigated this issue by tract-tracing and functional imaging in rats. Retrograde tracing revealed the rostral ventrolateral medulla was innervated by neurons in the ipsilateral dorsomedial hypothalamus (DMH). Anterograde tracing showed DMH neurons projected to the ventral medullary cardiovascular regions with axon terminals in contiguity with tyrosine hydroxylase-immunoreactive neurons. By voltage-sensitive dye imaging, dynamics of ventral medullary activation evoked by electrical stimulation of the DMH were analyzed in the diencephalon-lower brainstem-spinal cord preparation of rats. Although the activation of the ventral medulla induced by single pulse stimulation of the DMH was brief, tetanic stimulation caused activation of the DMH sustained into the post-stimulus phase, resulting in delayed recovery. We suggest that prolonged excitation of the DMH, which is triggered by tetanic electrical stimulation and could also be triggered by psychological stress in a real life, induces further prolonged excitation of the medullary cardiovascular networks, and could contribute to the pathological elevation of blood pressure. The connectivity from the DMH to the medullary cardiovascular networks serves as a chronological amplifier of stress-induced sympathetic excitation. This notion will be the anatomical and pathophysiological basis to understand the mechanisms of stress-induced sustained augmentation of sympathetic activity.


Asunto(s)
Vías Autónomas/fisiología , Núcleo Hipotalámico Dorsomedial/fisiología , Bulbo Raquídeo/fisiología , Neuronas/metabolismo , Sistema Nervioso Simpático/fisiología , Animales , Vías Autónomas/anatomía & histología , Núcleo Hipotalámico Dorsomedial/anatomía & histología , Masculino , Bulbo Raquídeo/anatomía & histología , Neuronas/citología , Ratas , Ratas Wistar , Sistema Nervioso Simpático/anatomía & histología
20.
Auton Neurosci ; 224: 102640, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32036244

RESUMEN

Hypertension often occurs in patients with chronic kidney disease (CKD). Considering the decrease in serum Klotho and increase in serum FGF23 levels in such patients, decreased Klotho and increased FGF23 levels were thought to be associated with hypertension. Presympathetic neurons at the rostral ventrolateral medulla (RVLM) contribute to sympathetic activity and regulation of blood pressure. Therefore, we hypothesized that Klotho would reduce the activities of RVLM neurons and FGF23 would stimulate them. Accordingly, this study examined the effects of Klotho and FGF23 on bulbospinal neurons in the RVLM. We used a brainstem-spinal cord preparation to record from RVLM presympathetic neurons and to evaluate the effects of Klotho and FGF23 on firing rate and membrane potentials of these neurons. Our results showed that Klotho-induced RVLM neuron hyperpolarization, while ouabain, a Na+/K+-ATPase inhibitor, suppressed the effects of Klotho on such neurons. Moreover, FGF23 induced RVLM neuron depolarization, while SU5402, an FGF23 receptor (FGFR1) antagonist, induced RVLM neuron hyperpolarization. Histological examinations revealed that Klotho, Na+/K+-ATPase, FGF23, and FGFR1 were present in RVLM neurons and that Klotho was localized in the same neurons as FGFR1. These results suggest that Klotho and FG23 regulate the activity of RVLM neurons. Klotho may reduce the activity of RVLM neurons via stimulating Na+/K+-ATPase on those neurons while FGF23 may activate those neurons via FGFR1.


Asunto(s)
Factores de Crecimiento de Fibroblastos/farmacología , Glucuronidasa/farmacología , Bulbo Raquídeo/efectos de los fármacos , Neuronas/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Hipertensión/fisiopatología , Proteínas Klotho , Potenciales de la Membrana/efectos de los fármacos , Neuronas/fisiología , Ratas Wistar , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología , Sistema Nervioso Simpático/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...