Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 216(Pt 1): 114429, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174753

RESUMEN

The opportunities for exposure to radiofrequency electromagnetic fields (RF-EMF) among children are increasing. Children's exposure to RF-EMF in Japan was recorded using a personal exposure meter (ExpoM-RF), and factors associated with the exposure examined. A total of 101 children, aged 10-15 years old, participated in the prospective birth cohort "Hokkaido study". RF-EMF data were recorded in the 700 MHz-5.8 GHz frequency range for 3 days. The recorded data were summarized into six groups of frequency bands: downlink from mobile phone base stations (DL), uplink from mobile phones to a base station (UL), Wireless Local Area Network (LAN), terrestrial digital TV broadcasting (digital TV), 2.5 GHz and 3.5 GHz Time Division Duplex (TDD), 1.9 GHz TDD, and total (the summation of power density in all measured frequency bands). A questionnaire was used to document the internet environment (at home) and mobile phone usage. Personal RF-EMF exposure in Japanese children was lower than that reported in studies in Europe. The DL signals from mobile phone base stations were the most significant contributors to total exposure, while Wireless LAN and digital TV were only higher at home. The urban residence was consistently associated with increases in the four groups of frequency bands (DL, UL, digital TV, and TDD). TDD level has several associations with mobile phone usage (calls using mobile phones, video viewing, text message service, and online game). The association between inattention/hyperactivity subscale of the Strengths and Difficulties Questionnaire (SDQ) and higher Wireless LAN exposure at nighttime was also noted. Further studies with additional data will shed light on factors involved in RF-EMF exposure among Japanese children.


Asunto(s)
Teléfono Celular , Salud Infantil , Niño , Humanos , Adolescente , Japón , Estudios Prospectivos , Ondas de Radio , Campos Electromagnéticos/efectos adversos , Encuestas y Cuestionarios , Exposición a Riesgos Ambientales
2.
Artículo en Inglés | MEDLINE | ID: mdl-34360361

RESUMEN

Recent progress in wireless technologies has made human exposure to electromagnetic fields (EMFs) increasingly complex. The situation can increase public concerns related to possible health effects due to EMF exposure. Monitoring EMF exposure levels and characterizing them are indispensable for risk communications of human exposure to EMFs. From this background, a project on the acquisition, accumulation, and applications of EMF exposure monitoring data in Japan was started in 2019. One of the objectives of this project is to obtain a comprehensive picture of EMF exposure in actual daily lives. In 2019 and 2020, we measured the electric field (E-field) strength from mainly mobile phone base stations in the same areas as those in measurements conducted in 2006 and 2007 by the Ministry of Internal Affairs and Communications (MIC), Japan, and compared the data to investigate the time-course of the EMF environment. The number of measured points was 100 (10 × 10 grids) in an area of 1 km × 1 km in two urban and two suburban areas, and that in an underground shopping mall was 158. This large-scale study is the first in Japan. As a result, we found that the measured E-field strengths tended to be higher in 2019 and 2020 than those in 2006 and 2007, especially in the mall. However, the median ratios to the Japanese radio wave protection guideline values for urban areas and malls are lower than -40 dB.


Asunto(s)
Teléfono Celular , Ondas de Radio , Campos Electromagnéticos/efectos adversos , Exposición a Riesgos Ambientales , Humanos , Japón , Ondas de Radio/efectos adversos , Tecnología Inalámbrica
3.
Phys Med Biol ; 60(20): 8129-40, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26439390

RESUMEN

In this study, the safety compliance for nonuniform field exposures is discussed using coupling factor concepts. The coupling factor, which is defined in the International Electrotechnical Commission 62311 standard, is extended to consider the effects of harmonics and also to apply to the specific absorption rate (for frequencies up to 30 MHz). The proposed compliance procedure is applied to and demonstrated for a prototype wireless power transfer (WPT) system with induction coupling operating at the fundamental frequency in 140 kHz band. First, measurements confirm that the perturbation of the external magnetic field strength and S11 parameter of a one-loop antenna by a human-equivalent phantom are sufficiently small, suggesting the applicability of the magneto-quasi-static approximation to frequencies up to 30 MHz. Then, the frequency characteristics of the coupling factor are derived for the WPT system. For the prototype system that is not optimized for commercial usage, the maximum allowable transmitting power is relaxed by a factor of 23 with the proposed procedure. The contribution of the harmonics decreased the allowable transmitting power by 39%, indicating their importance for safety compliance.


Asunto(s)
Campos Magnéticos , Modelos Anatómicos , Fantasmas de Imagen , Tecnología Inalámbrica/instrumentación , Humanos , Seguridad
4.
Phys Med Biol ; 59(14): 3721-35, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24936747

RESUMEN

This study investigates the specific absorption rate (SAR) and the in situ electric field in anatomically based human models for the magnetic field from an inductive wireless power transfer system developed on the basis of the specifications of the wireless power consortium. The transfer system consists of two induction coils covered by magnetic sheets. Both the waiting and charging conditions are considered. The transfer frequency considered in this study is 140 kHz, which is within the range where the magneto-quasi-static approximation is valid. The SAR and in situ electric field in the chest and arm of the models are calculated by numerically solving the scalar potential finite difference equation. The electromagnetic modelling of the coils in the wireless power transfer system is verified by comparing the computed and measured magnetic field distributions. The results indicate that the peak value of the SAR averaged over a 10 g of tissue and that of the in situ electric field are 72 nW kg(-1) and 91 mV m(-1) for a transmitted power of 1 W, Consequently, the maximum allowable transmitted powers satisfying the exposure limits of the SAR (2 W kg(-1)) and the in situ electric field (18.9 V m(-1)) are found to be 28 MW and 43 kW. The computational results show that the in situ electric field in the chest is the most restrictive factor when compliance with the wireless power transfer system is evaluated according to international guidelines.


Asunto(s)
Absorción de Radiación , Electricidad , Modelos Anatómicos , Tecnología Inalámbrica , Campos Electromagnéticos , Femenino , Humanos , Masculino
5.
IEEE Trans Electromagn Compat ; 48(2): 397-407, 2006 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29515260

RESUMEN

The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...