Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 21790, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311555

RESUMEN

Determination of crystal system and space group in the initial stages of crystal structure analysis forms a bottleneck in material science workflow that often requires manual tuning. Herein we propose a machine-learning (ML)-based approach for crystal system and space group classification based on powder X-ray diffraction (XRD) patterns as a proof of concept using simulated patterns. Our tree-ensemble-based ML model works with nearly or over 90% accuracy for crystal system classification, except for triclinic cases, and with 88% accuracy for space group classification with five candidates. We also succeeded in quantifying empirical knowledge vaguely shared among experts, showing the possibility for data-driven discovery of unrecognised characteristics embedded in experimental data by using an interpretable ML approach.

2.
Sci Rep ; 9(1): 1526, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728390

RESUMEN

We propose a method to accelerate small-angle scattering experiments by exploiting spatial correlation in two-dimensional data. We applied kernel density estimation to the average of a hundred short scans and evaluated noise reduction effects of kernel density estimation (smoothing). Although there is no advantage of using smoothing for isotropic data due to the powerful noise reduction effect of radial averaging, smoothing with a statistically and physically appropriate kernel can shorten measurement time by less than half to obtain sector averages with comparable statistical quality to that of sector averages without smoothing. This benefit will encourage researchers not to use full radial average on anisotropic data sacrificing anisotropy for statistical quality. We also confirmed that statistically reasonable estimation of measurement time is feasible on site by evaluating how intensity variances improve with accumulating counts. The noise reduction effect of smoothing will bring benefits to a wide range of applications from efficient use of beamtime at laboratories and large experimental facilities to stroboscopic measurements suffering low statistical quality.

3.
J Phys Condens Matter ; 31(6): 065801, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30524115

RESUMEN

The magnetic properties and atomic arrangement of Mn2CoGa Heusler alloy were investigated experimentally and by theoretical calculations. The magnetic moment derived from spontaneous magnetization at 5 K was 2.06 µ B/f.u. and was close to the integer number of the expected value from theoretical calculation and the Slater-Pauling rule predicted by Galanakis et al. The Curie temperature and L21-B2 order-disorder phase transition temperature were 741 and 1047 K, respectively. Powder neutron diffraction experiment results suggested that the atomic arrangement prefers an L21b-type structure rather than that of Hg2CuTi, being consistent with our previous results of high-angle annular dark-field-scanning transmission electron microscopic observations. The magnetic moments obtained were in good agreement with the theoretical values in the model of the L21b-type structure. The density of states obtained by the first-principles calculation combined with the coherent potential approximation in Mn2CoGa with the L21b-type crystal structure maintained the half-metallic character, even though disordering by Mn and Co atoms was introduced.

4.
Sci Rep ; 7(1): 12407, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963532

RESUMEN

Adsorption of radiocesium (RCs) on particulate matters in aquatic environment is important to understand its mobility and bioavailability. We here focused on factors controlling partition of RCs on particulate matters and sediments in Kuchibuto (Fukushima) and Pripyat (Chernobyl) Rivers, though RCs level in water was much smaller than WHO guideline. Moreover, Cs speciation and organic matter-clay mineral interaction were studied: (i) extended X-ray absorption fine structure showed that the contribution of outer-sphere complex of Cs on particulate matters is larger in Chernobyl than in Fukushima and (ii) scanning transmission X-ray microscope revealed larger association of humic substances and clay minerals in Chernobyl partly due to high [Ca2+] in the Pripyat River. Consequently, RCs is more soluble in the Pripyat River due to weaker interaction of RCs with clay minerals caused by the inhibition effect of the adsorbed humic substances. In contrast, particulate matters and sediments in the Kuchibuto River display high adsorption affinity with lesser inhibition effect of adsorbed humic substances. This difference is possibly governed by the geology and soil type of provenances surrounding both catchments (Fukushima: weathered granite; Chernobyl: peat wetland and carbonate platform) which leads to high concentrations of organic matter and Ca2+ in the Pripyat River.


Asunto(s)
Radioisótopos de Cesio/análisis , Material Particulado/química , Ríos/química , Contaminantes Radiactivos del Suelo/análisis , Suelo/química , Contaminantes Radiactivos del Agua/análisis , Agua/química , Adsorción , Accidente Nuclear de Chernóbil , Arcilla , Accidente Nuclear de Fukushima , Sedimentos Geológicos , Sustancias Húmicas , Minerales , Monitoreo de Radiación
5.
Microbes Environ ; 32(3): 283-287, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28781344

RESUMEN

Natural bacteriogenic iron oxides (BIOS) were investigated using local-analyzable synchrotron-based scanning transmission X-ray microscopy (STXM) with a submicron-scale resolution. Cell, cell sheath interface (EPS), and sheath in the BIOS were clearly depicted using C-, N-, and O- near edge X-ray absorption fine structure (NEXAFS) obtained through STXM measurements. Fe-NEXAFS obtained from different regions of BIOS indicated that the most dominant iron mineral species was ferrihydrite. Fe(II)- and/or Fe(III)-acidic polysaccharides accompanied ferrihydrite near the cell and EPS regions. Our STXM/NEXAFS analysis showed that Fe species change continuously between the cell, EPS, and sheath under several 10-nm scales.


Asunto(s)
Bacterias , Compuestos Férricos/análisis , Hierro , Sincrotrones , Espectroscopía de Absorción de Rayos X
6.
Sci Rep ; 6: 28167, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27321149

RESUMEN

We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

7.
Microbes Environ ; 31(1): 63-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26947441

RESUMEN

We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution.


Asunto(s)
Acidithiobacillus/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo , Microbiología Ambiental , Hierro/análisis , Sulfuros/metabolismo , Microanálisis por Sonda Electrónica , Hierro/metabolismo , Microscopía Electrónica de Transmisión de Rastreo , Oxidación-Reducción
8.
Sci Rep ; 5: 14858, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26456454

RESUMEN

We have studied the magnetic layer thickness dependence of the orbital magnetic moment in magnetic heterostructures to identify contributions from interfaces. Three different heterostructures, Ta/CoFeB/MgO, Pt/Co/AlOx and Pt/Co/Pt, which possess significant interface contribution to the perpendicular magnetic anisotropy, are studied as model systems. X-ray magnetic circular dichroism spectroscopy is used to evaluate the relative orbital moment, i.e. the ratio of the orbital to spin moments, of the magnetic elements constituting the heterostructures. We find that the relative orbital moment of Co in Pt/Co/Pt remains constant against its thickness whereas the moment increases with decreasing Co layer thickness for Pt/Co/AlOx, suggesting that a non-zero interface orbital moment exists for the latter system. For Ta/CoFeB/MgO, a non-zero interface orbital moment is found only for Fe. X-ray absorption spectra shows that a particular oxidized Co state in Pt/Co/AlOx, absent in other heterosturctures, may give rise to the interface orbital moment in this system. These results show element specific contributions to the interface orbital magnetic moments in ultrathin magnetic heterostructures.

9.
J Appl Phys ; 117(17): 17D149, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25991875

RESUMEN

Visualization of the magnetic domain structure is indispensable to the investigation of magnetization processes and the coercivity mechanism. It is necessary to develop a reconstruction method from the reciprocal-space image to the real-space image. For this purpose, it is necessary to solve the problem of missing phase information in the reciprocal-space image. We propose the method of extend Fourier image with mean-value padding to compensate for the phase information. We visualized the magnetic domain structure using the Reverse Monte Carlo method with simulated annealing to accelerate the calculation. With this technique, we demonstrated the restoration of the magnetic domain structure, obtained magnetization and magnetic domain width, and reproduced the characteristic form that constitutes a magnetic domain.

10.
Sci Rep ; 5: 9483, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25822809

RESUMEN

Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix.

11.
Nanoscale ; 6(23): 14227-36, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25351176

RESUMEN

Ti1-x-yFexCoyO2 nanosheets are synthesized in which the (Fe/Co) content is systematically controlled in the range of 0 ≤ x ≤ 0.4 and 0 ≤ y ≤ 0.2. A key feature of this new preparation is the use of (Li/Fe)-, (Fe/Co)- and (Li/Co)-co-substituted layered titanates as starting materials. In exfoliated nanosheets, the composition can be intentionally modified by controlled Fe/Co substitution into Ti sites during the solid-state synthesis of the starting layered compounds. The composition of the host layers is maintained in the subsequent exfoliation process, which is very helpful in the rational design of nanosheets through the use of controlled doping. Through this controlled doping, we achieve exquisite control of the electronic properties of Ti1-δO2 nanosheets, including the position of impurity bands, the Fermi energy and ferromagnetic properties. From photoelectron spectroscopy and first-principles studies, we have observed that the use of Fe/Co co-doping with higher Fe and Co oxidation states is necessary to bring the highest occupied Fe/Co impurity states to the Fermi level. This band engineering transforms the Ti1-x-yFexCoyO2 nanosheet into a room-temperature half-metallic ferromagnet, thus accomplishing the main requirements of future spinelectronics.

12.
Sci Rep ; 4: 4381, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24625746

RESUMEN

Unconventional Cooper pairing originating from spin or orbital fluctuations has been proposed for iron-based superconductors. Such pairing may be enhanced by quasi-nesting of two-dimensional electron and hole-like Fermi surfaces (FS), which is considered an important ingredient for superconductivity at high critical temperatures (high-Tc). However, the dimensionality of the FS varies for hole and electron-doped systems, so the precise importance of this feature for high-Tc materials remains unclear. Here we demonstrate a phase of electron-doped CaFe2As2 (La and P co-doped CaFe2As2) with Tc = 45 K, which is the highest Tc found for the AEFe2As2 bulk superconductors (122-type; AE = Alkaline Earth), possesses only cylindrical hole- and electron-like FSs. This result indicates that FS topology consisting only of two-dimensional sheets is characteristic of both hole- and electron-doped 122-type high-Tc superconductors.

13.
ACS Nano ; 5(9): 6871-9, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21823647

RESUMEN

We have investigated the interface electronic states in self-assembled (Ti(0.8)Co(0.2)O(2)/Ti(0.6)Fe(0.4)O(2))(n) superlattices by X-ray photoelectron spectroscopy. A charge of about -0.3 electron is transferred from Fe to Co ions across the interface and induces a major reconstruction of the orbital occupation at the interfacial (Ti(0.8)Co(0.2)O(2)/Ti(0.6)Fe(0.4)O(2)) layers. Supported by first-principles calculations, the Co(3+) state is partially occupied at the interface by superlattice formation, and this new magnetic state directly influences the coupling between Ti(0.8)Co(0.2)O(2) and Ti(0.6)Fe(0.4)O(2) nanosheets. These data indicate that the orbital reconstruction is indeed realized by the interface charge transfer between Co and Fe ions in the adjoined nanosheets, and the generic feature of engineered interfaces can be extended to self-assembled superlattices of oxide nanosheets.

14.
ACS Nano ; 4(9): 5225-32, 2010 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-20735075

RESUMEN

Size-induced suppression of permittivity in perovskite thin films is a fundamental problem that has remained unresolved for decades. This size-effect issue becomes increasingly important due to the integration of perovskite nanofilms into high-κ capacitors, as well as concerns that intrinsic size effects may limit their device performance. Here, we report a new approach to produce robust high-κ nanodielectrics using perovskite nanosheet (Ca2Nb3O10), a new class of nanomaterials that is derived from layered compounds by exfoliation. By a solution-based bottom-up approach using perovskite nanosheets, we have successfully fabricated multilayer nanofilms directly on SrRuO3 or Pt substrates without any interfacial dead layers. These nanofilms exhibit high dielectric constant (>200), the largest value seen so far in perovskite films with a thickness down to 10 nm. Furthermore, the superior high-κ properties are a size-effect-free characteristic with low leakage current density (<10(-7) A cm(-2)). Our work provides a key for understanding the size effect and also represents a step toward a bottom-up paradigm for future high-κ devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...