Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928355

RESUMEN

The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/ß-Tricalcium phosphate (E-rhBMP-2/ß-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/ß-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/ß-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/ß-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ.


Asunto(s)
Proteína Morfogenética Ósea 2 , Fosfatos de Calcio , Modelos Animales de Enfermedad , Osteocitos , Proteínas Recombinantes , Animales , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 2/metabolismo , Osteocitos/efectos de los fármacos , Fosfatos de Calcio/farmacología , Ratones , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/administración & dosificación , Osteonecrosis de los Maxilares Asociada a Difosfonatos/etiología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Humanos , Regeneración Ósea/efectos de los fármacos , Masculino , Extracción Dental/efectos adversos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Proceso Alveolar/efectos de los fármacos , Proceso Alveolar/patología
2.
Cells ; 13(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38786031

RESUMEN

The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism.


Asunto(s)
Proteína Morfogenética Ósea 2 , Mucosa Bucal , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Mucosa Bucal/metabolismo , Animales , Ratones , Queratinas/metabolismo , Queratinas/genética , Proliferación Celular , Regulación de la Expresión Génica , Humanos , Ontología de Genes
3.
JBMR Plus ; 8(6): ziae050, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38699440

RESUMEN

Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38625720

RESUMEN

Phytopathogenic bacteria (MAFF 302110T and MAFF 302107) were isolated from lesions on Japanese angelica trees affected by bacterial soft rot in Yamanashi Prefecture, Japan. The strains were Gram-reaction-negative, facultatively anaerobic, motile with peritrichous flagella, rod-shaped, and non-spore-forming. The genomic DNA G+C content was 51.1 mol % and the predominant cellular fatty acids included summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 2 (comprising any combination of C12 : 0 aldehyde, an unknown fatty acid with an equivalent chain length of 10.928, C16 : 1 iso I, and C14 : 0 3OH), and C12 : 0. Phylogenetic analyses based on 16S rRNA and gyrB gene sequences, along with phylogenomic analysis utilizing whole-genome sequences, consistently placed these strains within the genus Pectobacterium. However, their phylogenetic positions did not align with any known species within the genus. Comparative studies involving average nucleotide identity and digital DNA-DNA hybridization with the closely related species indicated values below the thresholds employed for the prokaryotic species delineation (95-96 % and 70 %, respectively), with the highest values observed for Pectobacterium polonicum DPMP315T (92.10 and 47.1 %, respectively). Phenotypic characteristics, cellular fatty acid composition, and a repertoire of secretion systems could differentiate the strains from their closest relatives. The phenotypic, chemotaxonomic, and genotypic data obtained in this study show that MAFF 302110T/MAFF 302107 represent a novel species of the genus Pectobacterium, for which we propose the name Pectobacterium araliae sp. nov., designating MAFF 302110T (=ICMP 25161T) as the type strain.


Asunto(s)
Angelica , Pectobacterium , Japón , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias
5.
J Prosthodont Res ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38479889

RESUMEN

PURPOSE: This prospective cohort study examined the effects of the number of present and functional teeth on mortality among older Japanese adults requiring nursing care in an environment of comprehensive oral hygiene and nutritional management. METHODS: The study included 174 older adults (mean age: 84.4 ± 8.3 years; male/female: 49/125) in need of support or long-term care, who resided in either a local specialized healthcare facility or their own homes, and received daily oral hygiene and nutritional support at facilities in Okayama, Japan. The initial clinical oral examination along with assessment of general physical condition and nursing environment of the participants were performed in July 2013 and followed up for one year. RESULTS: All-cause mortality occurred in 28 (mean age: 88.7 ±13.4 years; male/female: 6 /22) individuals during the follow-up period. Cox proportional hazard analysis indicated that older age, low performance in activities of daily living (Barthel Index <40), and underweight status (body mass index <18.5) were significant risk factors for mortality. The number of present and functional teeth were not found to be significant risk factors for mortality. CONCLUSIONS: During the one-year follow-up period, the number of present and functional teeth did not have a significant impact on mortality among older Japanese adults requiring nursing care in a well-managed environment of oral hygiene and nutritional status.

6.
Cancer Sci ; 115(4): 1317-1332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279512

RESUMEN

T-cell acute leukemia and lymphoma have a poor prognosis. Although new therapeutic agents have been developed, their therapeutic effects are suboptimal. α-Pinene, a monoterpene compound, has an antitumor effect on solid tumors; however, few comprehensive investigations have been conducted on its impact on hematologic malignancies. This report provides a comprehensive analysis of the potential benefits of using α-pinene as an antitumor agent for the treatment of T-cell tumors. We found that α-pinene inhibited the proliferation of hematologic malignancies, especially in T-cell tumor cell lines EL-4 and Molt-4, induced mitochondrial dysfunction and reactive oxygen species accumulation, and inhibited NF-κB p65 translocation into the nucleus, leading to robust apoptosis in EL-4 cells. Collectively, these findings suggest that α-pinene has potential as a therapeutic agent for T-cell malignancies, and further investigation is warranted.


Asunto(s)
Monoterpenos Bicíclicos , Neoplasias Hematológicas , Neoplasias , Humanos , FN-kappa B/metabolismo , Linfocitos T/metabolismo , Apoptosis , Línea Celular Tumoral , Proliferación Celular
7.
Cell Stem Cell ; 30(9): 1179-1198.e7, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683603

RESUMEN

Osteoarthritis is a degenerative joint disease that causes pain, degradation, and dysfunction. Excessive canonical Wnt signaling in osteoarthritis contributes to chondrocyte phenotypic instability and loss of cartilage homeostasis; however, the regulatory niche is unknown. Using the temporomandibular joint as a model in multiple species, we identify Lgr5-expressing secretory cells as forming a Wnt inhibitory niche that instruct Wnt-inactive chondroprogenitors to form the nascent synovial joint and regulate chondrocyte lineage and identity. Lgr5 ablation or suppression during joint development, aging, or osteoarthritis results in depletion of Wnt-inactive chondroprogenitors and a surge of Wnt-activated, phenotypically unstable chondrocytes with osteoblast-like properties. We recapitulate the cartilage niche and create StemJEL, an injectable hydrogel therapy combining hyaluronic acid and sclerostin. Local delivery of StemJEL to post-traumatic osteoarthritic jaw and knee joints in rabbit, rat, and mini-pig models restores cartilage homeostasis, chondrocyte identity, and joint function. We provide proof of principal that StemJEL preserves the chondrocyte niche and alleviates osteoarthritis.


Asunto(s)
Condrocitos , Osteoartritis , Porcinos , Animales , Conejos , Ratas , Porcinos Enanos , Cartílago , Envejecimiento , Receptores Acoplados a Proteínas G
8.
J Fungi (Basel) ; 9(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36983482

RESUMEN

Current periodontal treatment focuses on the mechanical removal of the source of infection, such as bacteria and their products, and there is no approach to control the host inflammatory response that leads to tissue destruction. In order to control periodontal inflammation, we have previously reported the optimization of (+)-terrein synthesis methods and the inhibitory effect of (+)-terrein on osteoclast differentiation in vitro. However, the pharmacological effect of (+)-terrein in vivo in the periodontitis model is still unknown. In this study, we investigated the effect of synthetic (+)-terrein on inflammatory bone resorption using a ligature-induced periodontitis mouse model. Synthetic (+)-terrein (30 mg/kg) was administered intraperitoneally twice a week to the mouse periodontitis model. The control group was treated with phosphate buffer. One to two weeks after the induction of periodontitis, the periodontal tissues were harvested for radiological evaluation (micro-CT), histological evaluation (HE staining and TRAP staining), and the evaluation of inflammatory cytokine production in the periodontal tissues and serum (quantitative reverse-transcription PCR, ELISA). The synthetic (+)-terrein-treated group suppressed alveolar bone resorption and the number of osteoclasts in the periodontal tissues compared to the control group (p < 0.05). In addition, synthetic (+)-terrein significantly suppressed both mRNA expression of TNF-α in the periodontal tissues and the serum concentration of TNF-α (both p < 0.05). In conclusion, we have demonstrated that synthetic (+)-terrein abrogates alveolar bone resorption via the suppression of TNF-α production and osteoclast differentiation in vivo. Therefore, we could expect potential clinical effects when using (+)-terrein on inflammatory bone resorption, including periodontitis.

9.
Orthod Craniofac Res ; 26 Suppl 1: 131-141, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36891610

RESUMEN

OBJECTIVE: The temporomandibular joint (TMJ) is anatomically comprised of the mandibular condylar cartilage (CC) lined with fibrocartilaginous superficial zone and is crucial for eating and dental occlusion. TMJ osteoarthritis (OA) leads to pain, joint dysfunction and permanent loss of cartilage tissue. However, there are no drugs clinically available that ameliorate OA and little is known about global profiles of genes that contribute to TMJ OA. Furthermore, animal models that recapitulate the complexity of signalling pathways contributing to OA pathogenesis are crucial for designing novel biologics that thwart OA progression. We have previously developed a New Zealand white rabbit TMJ injury model that demonstrates CC degeneration. Here, we performed genome-wide profiling to identify new signalling pathways critical for cellular functions during OA pathology. MATERIALS AND METHODS: Temporomandibular joint OA was surgically induced in New Zealand white rabbits. Three months following injury, we performed global gene expression profiling of the TMJ condyle. RNA samples from TMJ condyles were subjected to sequencing. After raw RNA-seq data were mapped to relevant genomes, differential expression was analysed with DESeq2. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted. RESULTS/CONCLUSIONS: Our study revealed multiple pathways altered during TMJ OA induction including the Wnt, Notch and PI3K-Akt signalling pathways. We demonstrate an animal model that recapitulates the complexity of the cues and signals underlying TMJ OA pathogenesis, which is essential for developing and testing novel pharmacologic agents to treat OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Conejos , Animales , RNA-Seq , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Articulación Temporomandibular , Cóndilo Mandibular/metabolismo , Cartílago/metabolismo , Cartílago/patología , Osteoartritis/genética , Osteoartritis/metabolismo , Cartílago Articular/metabolismo
10.
Oral Dis ; 29(3): 1089-1101, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34743383

RESUMEN

OBJECTIVE: Cherubism is a genetic disorder characterised by bilateral jawbone deformation. The associated jawbone lesions regress after puberty, whereas severe cases require surgical treatment. Although several drugs have been tested, fundamental treatment strategies for cherubism have not been established. The effectiveness of imatinib has recently been reported; however, its pharmaceutical mechanism remains unclear. In this study, we tested the effects of imatinib using a cherubism mouse model. METHODS: We used Sh3bp2 P416R cherubism mutant mice, which exhibit systemic organ inflammation and osteopenia. The effects of imatinib were determined using primary bone marrow-derived macrophages. Imatinib was administered intraperitoneally to the mice, and serum tumour necrosis factor-α (TNFα), organ inflammation and bone properties were examined. RESULTS: The cherubism mutant macrophages produced higher levels of TNFα in response to lipopolysaccharide compared to wild-type macrophages, and imatinib did not significantly suppress TNFα production. Although imatinib suppressed osteoclast formation in vitro, administering it in vivo did not suppress organ inflammation and osteopenia. CONCLUSION: The in vivo administration of imatinib had a minimal therapeutic impact in cherubism mutant mice. To establish better pharmaceutical interventions, it is necessary to integrate new findings from murine models with clinical data from patients with a definitive diagnosis of cherubism.


Asunto(s)
Enfermedades Óseas Metabólicas , Querubismo , Ratones , Animales , Querubismo/tratamiento farmacológico , Querubismo/genética , Factor de Necrosis Tumoral alfa/metabolismo , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/genética , Inflamación/patología , Fenotipo
11.
PLoS One ; 17(11): e0277307, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36395281

RESUMEN

Cysteinyl leukotriene receptor 1 (CysLTR1) is a G protein-coupled receptor for the inflammatory lipid mediators cysteinyl leukotrienes, which are involved in smooth muscle constriction, vascular permeability, and macrophage chemokine release. The Cysltr1 gene encoding CysLTR1 is expressed in the macrophage lineage, including osteoclasts, and the CysLTR1 antagonist Montelukast has been shown to suppress the formation of osteoclasts. However, it currently remains unclear whether CysLTR1 is involved in osteoclast differentiation and bone loss. Therefore, to clarify the role of CysLTR1 in osteoclastogenesis and pathological bone loss, we herein generated CysLTR1 loss-of-function mutant mice by disrupting the cysltr1 gene using the CRISPR-Cas9 system. These mutant mice had a frameshift mutation resulting in a premature stop codon (Cysltr1 KO) or an in-frame mutation causing the deletion of the first extracellular loop (Cysltr1Δ105). Bone marrow macrophages (BMM) from these mutant mice lost the intracellular flux of calcium in response to leukotriene D4, indicating that these mutants completely lost the activity of CysLTR1 without triggering genetic compensation. However, disruption of the Cysltr1 gene did not suppress the formation of osteoclasts from BMM in vitro. We also demonstrated that the CysLTR1 antagonist Montelukast suppressed the formation of osteoclasts without functional CysLTR1. On the other hand, disruption of the Cysltr1 gene partially suppressed the formation of osteoclasts stimulated by leukotriene D4 and did not inhibit that by glutathione, functioning as a substrate in the synthesis of cysteinyl leukotrienes. Disruption of the Cysltr1 gene did not affect ovariectomy-induced osteoporosis or lipopolysaccharide-induced bone resorption. Collectively, these results suggest that the CysLT-CysLTR1 axis is dispensable for osteoclast differentiation in vitro and pathological bone loss, while the leukotriene D4-CysTR1 axis is sufficient to stimulate osteoclast formation. We concluded that the effects of glutathione and Montelukast on osteoclast formation were independent of CysLTR1.


Asunto(s)
Resorción Ósea , Osteoclastos , Femenino , Ratones , Animales , Leucotrieno D4/farmacología , Resorción Ósea/genética , Resorción Ósea/patología , Leucotrienos , Glutatión/farmacología
12.
Biomedicines ; 10(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359248

RESUMEN

Tumor angiogenesis is one of the hallmarks of solid tumor development. The progressive tumor cells produce the angiogenic factors and promote tumor angiogenesis. However, how the tumor stromal cells influence tumor vascularization is still unclear. In the present study, we evaluated the effects of oral squamous cell carcinoma (OSCC) stromal cells on tumor vascularization. The tumor stromal cells were isolated from two OSCC patients with different subtypes: low invasive verrucous squamous carcinoma (VSCC) and highly invasive squamous cell carcinoma (SCC) and co-xenografted with the human OSCC cell line (HSC-2) on nude mice. In comparison, the CD34+ vessels in HSC-2+VSCC were larger than in HSC-2+SCC. Interestingly, the vessels in the HSC-2+VSCC expressed vascular endothelial cadherin (VE-cadherin), indicating well-formed vascularization. Our microarray data revealed that the expression of extracellular superoxide dismutase, SOD3 mRNA is higher in VSCC stromal cells than in SCC stromal cells. Moreover, we observed that SOD3 colocalized with VE-cadherin on endothelial cells of low invasive stroma xenograft. These data suggested that SOD3 expression in stromal cells may potentially regulate tumor vascularization in OSCC. Thus, our study suggests the potential interest in SOD3-related vascular integrity for a better OSCC therapeutic strategy.

13.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887169

RESUMEN

Osteoporosis is a common bone disease, particularly in menopausal women. Herein, we screened four Kampo medicines (Unkeito (UKT), Kamishoyosan (KSS), Kamikihito (KKT), and Ninjinyoeito (NYT)), frequently used to treat menopausal syndromes, for their effects on receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation in RAW 264 cells. Considering that UKT exhibited the most potent effect, we examined its effect on RANKL-induced osteoclastogenesis, the induction of osteoclast apoptosis, and the mechanisms underlying its effects. UKT inhibits RANKL-induced osteoclast differentiation in the early stage and decreases osteoclast-related genes, including tartrate-resistant acid phosphatase (Trap), dendritic cell-specific transmembrane protein (Dcstamp), matrix metalloproteinase-9 (Mmp9), and cathepsin K (Ctsk). Specifically, UKT inhibits the nuclear factor of activated T cells 1 (NFATc1), which is essential for osteoclastogenesis. UKT increases Bcl6, which antagonizes NFATc1 and Dc-stamp, thereby blocking the progression of osteoclasts to maturation. UKT also decreased nuclear translocation by downregulating the activity of p65/NF-κB. In addition, UKT enhances mononuclear osteoclast apoptosis via activation of caspase-3. Herein, we demonstrate that UKT suppresses RANKL-mediated osteoclastogenesis via the Blimp1-Bcl6 and NF-κB signaling pathways and enhances mononuclear osteoclast apoptosis. Furthermore, UKT prevents bone loss in OVX mice. Thus, UKT might be a potential therapeutic agent for postmenopausal osteoporosis.


Asunto(s)
Resorción Ósea , Osteoclastos , Animales , Apoptosis , Resorción Ósea/metabolismo , Diferenciación Celular , Femenino , Humanos , Ratones , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6 , Ligando RANK/metabolismo , Ligando RANK/farmacología , Transducción de Señal
14.
J Prosthodont Res ; 66(2): 250-257, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-34470983

RESUMEN

PURPOSE: We aimed to determine root caries annual incidence (RCAI) and root caries annual progression (RCAP) and risk factors for them among older people requiring nursing care. METHODS: The target population comprised 186 dentate individuals aged ≥ 65 years who required nursing care while living in nursing homes (NHs) or their own homes (OHs) in Okayama, Japan. Survey items included presence/absence and severity of root caries, age, sex, living environment (NH or OH), the Clinical Dementia Rating, and the Barthel Index (BI). Baseline surveys were conducted from 2015 to 2017; subjects were followed up for one year. RCAI and RCAP per tooth and per person were calculated, and risk factors for them were identified using generalized estimating equations. RESULTS: In total, 104 individuals (mean age: 82.0 ± 12.4 years) completed the follow-up survey. RCAIs per tooth and per person were 14.6% (173/1188) and 59.6% (62/104), respectively. RCAP per tooth was 22.5% (51/227 teeth with root caries at baseline). Significant risk factors for RCAI were living environment (OH, odds ratio [OR]: 2.14), sex (male, OR: 1.84), clasped tooth (OR: 1.82), and older age (OR: 1.05) at baseline. Significant risk factors for RCAP were sex (male, OR: 5.20), regular dental checkup (OR: 2.74), and high BI score (OR: 1.02) at baseline. CONCLUSION: At one-year follow-up, 59.6% of the subjects developed at least one root caries. Risk factors for RCAI were living environment (OH), male, clasped tooth, and older age, whereas those for RCAP were male, regular dental checkup, and high BI score.


Asunto(s)
Caries Dental , Caries Radicular , Anciano , Anciano de 80 o más Años , Caries Dental/epidemiología , Femenino , Humanos , Incidencia , Masculino , Estudios Prospectivos , Factores de Riesgo , Caries Radicular/epidemiología
15.
J Prosthodont Res ; 66(1): 124-130, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34176850

RESUMEN

PURPOSE: Bone morphogenetic protein (BMP)-2 is a potent growth factor that is widely used in the orthopedic and dental fields for bone regeneration. However, recombinant human BMP-2 (rhBMP-2) products have not been legally approved in Japan. Recently, our research group succeeded in producing GMP-grade rhBMP-2 using the E. coli system (E-rhBMP-2) at the industrial level and developed E-rhBMP-2 adsorbed onto ß-TCP (E-rhBMP-2/ß-TCP) as an alternative material to autogenous bone grafts. Previous studies on the toxicity, pharmacokinetics, and optimal doses of E-rhBMP-2 have confirmed its safety and efficiency. However, comparative studies with standard treatment therapies are still necessary before clinical application in humans. Therefore, in this preclinical study, we compared the bone regeneration ability of E-rhBMP-2/ß-TCP and autogenous bone grafts in a canine guided-bone regeneration model. METHODS: Following extraction of the maxillary third premolar, box-type bone defects (10 mmL × 4 mmW × 9 mmH) were created in the extraction socket area and transplanted with E-rhBMP-2/ß-TCP or autogenous bone graft in a canine. After 8 weeks, micro-CT and histological analyses were performed. RESULTS: Transplantation of both E-rhBMP-2/ß-TCP and autogenous bone graft significantly promoted bone formation compared to the non-transplantation control group. The bone formation ability of E-rhBMP-2/ß-TCP was equal to that of the autogenous bone graft. Histological analysis showed that excessive infiltration of inflammatory cells and residual ß-TCP particles mostly were not observed in the E-rhBMP-2/ß-TCP transplantation group. CONCLUSION: This preclinical study demonstrated that E-rhBMP-2/ß-TCP and autogenous bone have equal potential to promote bone regeneration.


Asunto(s)
Proteína Morfogenética Ósea 2 , Escherichia coli , Regeneración Ósea , Fosfatos de Calcio , Humanos , Equivalencia Terapéutica
16.
J Prosthodont Res ; 66(1): 184-192, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34053972

RESUMEN

PATIENT: A 54-year-old woman presenting with anterior alveolar ridge resorption was submitted to a connective tissue graft (CTG) for esthetic improvement before rehabilitation with a fixed partial denture. Palate-harvested connective tissue was used as a graft after extra-oral removal of the epithelium. Unexpectedly, complete wound healing was not observed. Moreover, 6 months post-surgery, a white discharge was detected at the grafted site. The adjacent tooth showing a root fracture was initially associated with the symptoms and was then extracted. Concomitantly, the unhealed tissue at the grafted site was also excised, leading to temporary symptom resolution. However, the white discharge reappeared after 2 months. The excision area was expanded to remove the grafted tissue entirely, and the wound was completely healed. Since the alveolar ridge resorption had become larger compared to the preoperative condition, the patient was subjected to a second CTG, now using a connective tissue harvested from the palate by a single incision technique. The wound healed uneventfully, and the final prosthesis was delivered 6 months after soft tissue stabilization. The patient has been followed-up for more than 28 months without any recurrence of white discharge. DISCUSSION: Histopathological and cytological examination detected keratinized epithelial tissues and cells, respectively, in excised tissues and white discharge specimens. Consequently, a possible relationship between white discharge and residual epithelium in the harvested graft was strongly suspected. CONCLUSION: Success of the CTG procedure requires careful method selection for tissue transplantation and treatment execution.


Asunto(s)
Pérdida de Hueso Alveolar , Aumento de la Cresta Alveolar , Tejido Conectivo , Dentadura Parcial Fija , Femenino , Encía , Humanos , Persona de Mediana Edad
17.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884630

RESUMEN

Medication-related osteonecrosis of the jaw (MRONJ) is related to impaired bone healing conditions in the maxillomandibular bone region as a complication of bisphosphonate intake. Although there are several hypotheses for the onset of MRONJ symptoms, one of the possible causes is the inhibition of bone turnover and blood supply leading to bone necrosis. The optimal treatment strategy for MRONJ has not been established either. BMP-2, a member of the TGF-ß superfamily, is well known for regulating bone remodeling and homeostasis prenatally and postnatally. Therefore, the objectives of this study were to evaluate whether cyclophosphamide/zoledronate (CY/ZA) induces necrosis of the bone surrounding the tooth extraction socket, and to examine the therapeutic potential of BMP-2 in combination with the hard osteoinductive biomaterial, ß-tricalcium phosphate (ß-TCP), in the prevention and treatment of alveolar bone loss around the tooth extraction socket in MRONJ-like mice models. First, CY/ZA was intraperitoneally administered for three weeks, and alveolar bone necrosis was evaluated before and after tooth extraction. Next, the effect of BMP-2/ß-TCP was investigated in both MRONJ-like prevention and treatment models. In the prevention model, CY/ZA was continuously administered for four weeks after BMP-2/ß-TCP transplantation. In the treatment model, CY/ZA administration was suspended after transplantation of BMP-2/ß-TCP. The results showed that CY/ZA induced a significant decrease in the number of empty lacunae, a sign of bone necrosis, in the alveolar bone around the tooth extraction socket after tooth extraction. Histological analysis showed a significant decrease in the necrotic alveolar bone around tooth extraction sockets in the BMP-2/ß-TCP transplantation group compared to the non-transplanted control group in both MRONJ-like prevention and treatment models. However, bone mineral density, determined by micro-CT analysis, was significantly higher in the BMP-2/ß-TCP transplanted group than in the control group in the prevention model only. These results clarified that alveolar bone necrosis around tooth extraction sockets can be induced after surgical intervention under CY/ZA administration. In addition, transplantation of BMP-2/ß-TCP reduced the necrotic alveolar bone around the tooth extraction socket. Therefore, a combination of BMP-2/ß-TCP could be an alternative approach for both prevention and treatment of MRONJ-like symptoms.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos/terapia , Proteína Morfogenética Ósea 2/administración & dosificación , Trasplante Óseo/métodos , Fosfatos de Calcio/administración & dosificación , Ciclofosfamida/toxicidad , Extracción Dental/efectos adversos , Factor de Crecimiento Transformador beta/administración & dosificación , Ácido Zoledrónico/toxicidad , Pérdida de Hueso Alveolar/etiología , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/patología , Pérdida de Hueso Alveolar/terapia , Animales , Osteonecrosis de los Maxilares Asociada a Difosfonatos/etiología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/metabolismo , Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Conservadores de la Densidad Ósea/toxicidad , Fosfatos de Calcio/farmacología , Difosfonatos/toxicidad , Modelos Animales de Enfermedad , Femenino , Inmunosupresores/toxicidad , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/administración & dosificación , Cicatrización de Heridas
18.
Front Pharmacol ; 12: 674366, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34168561

RESUMEN

Osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. Severe bone loss due to osteoporosis triggers pathological fractures and consequently decreases the daily life activity and quality of life. Therefore, prevention of osteoporosis has become an important issue to be addressed. We have reported that the fungal secondary metabolite (+)-terrein (TER), a natural compound derived from Aspergillus terreus, has shown receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation by suppressing nuclear factor of activated T-cell 1 (NFATc1) expression, a master regulator of osteoclastogenesis. TER has been shown to possess extensive biological and pharmacological benefits; however, its effects on bone metabolism remain unclear. In this study, we investigated the effects of TER on the femoral bone metabolism using a mouse-ovariectomized osteoporosis model (OVX mice) and then on RANKL signal transduction using mouse bone marrow macrophages (mBMMs). In vivo administration of TER significantly improved bone density, bone mass, and trabecular number in OVX mice (p < 0.01). In addition, TER suppressed TRAP and cathepsin-K expression in the tissue sections of OVX mice (p < 0.01). In an in vitro study, TER suppressed RANKL-induced phosphorylation of PKCα/ßII, which is involved in the expression of NFATc1 (p < 0.05). The PKC inhibitor, GF109203X, also inhibited RANKL-induced osteoclastogenesis in mBMMs as well as TER. In addition, TER suppressed the expression of osteoclastogenesis-related genes, such as Ocstamp, Dcstamp, Calcr, Atp6v0d2, Oscar, and Itgb3 (p < 0.01). These results provide promising evidence for the potential therapeutic application of TER as a novel treatment compound against osteoporosis.

19.
PLoS One ; 16(4): e0249909, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33848312

RESUMEN

Congenital hearing loss affects 1 in every 1000 births, with genetic mutations contributing to more than 50% of all cases. X-linked nonsyndromic hereditary hearing loss is associated with six loci (DFNX1-6) and five genes. Recently, the missense mutation (c.1771G>A, p.Gly591Ser) in COL4A6, encoding the basement membrane (BM) collagen α6(IV) chain, was shown to be associated with X-linked congenital nonsyndromic hearing loss with cochlear malformation. However, the mechanism by which the COL4A6 mutation impacts hereditary hearing loss has not yet been elucidated. Herein, we investigated Col4a6 knockout (KO) effects on hearing function and cochlear formation in mice. Immunohistochemistry showed that the collagen α6(IV) chain was distributed throughout the mouse cochlea within subepithelial BMs underlying the interdental cells, inner sulcus cells, basilar membrane, outer sulcus cells, root cells, Reissner's membrane, and perivascular BMs in the spiral limbus, spiral ligament, and stria vascularis. However, the click-evoked auditory brainstem response analysis did not show significant changes in the hearing threshold of Col4a6 KO mice compared with wild-type (WT) mice with the same genetic background. In addition, the cochlear structures of Col4a6 KO mice did not exhibit morphological alterations, according to the results of high-resolution micro-computed tomography and histology. Hence, loss of Col4a6 gene expression in mice showed normal click ABR thresholds and normal cochlear formation, which differs from humans with the COL4A6 missense mutation c.1771G>A, p.Gly591Ser. Therefore, the deleterious effects in the auditory system caused by the missense mutation in COL4A6 are likely due to the dominant-negative effects of the α6(IV) chain and/or α5α6α5(IV) heterotrimer with an aberrant structure that would not occur in cases with loss of gene expression.


Asunto(s)
Cóclea/metabolismo , Colágeno Tipo IV/genética , Sordera/patología , Animales , Umbral Auditivo , Cóclea/química , Cóclea/diagnóstico por imagen , Cóclea/patología , Colágeno Tipo IV/deficiencia , Sordera/congénito , Sordera/genética , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación Missense , Fenotipo , Multimerización de Proteína , Microtomografía por Rayos X
20.
Materials (Basel) ; 14(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406724

RESUMEN

Aging tissues present a progressive decline in homeostasis and regenerative capacities, which has been associated with degenerative changes in tissue-specific stem cells and stem cell niches. We hypothesized that amino acids could regulate the stem cell phenotype and differentiation ability of human bone marrow-derived mesenchymal stromal cells (hBMSCs). Thus, we performed a screening of 22 standard amino acids and found that D-tryptophan (10 µM) increased the number of cells positive for the early stem cell marker SSEA-4, and the gene expression levels of OCT-4, NANOG, and SOX-2 in hBMSCs. Comparison between D- and L-tryptophan isomers showed that the latter presents a stronger effect in inducing the mRNA levels of Oct-4 and Nanog, and in increasing the osteogenic differentiation of hBMSCs. On the other hand, L-tryptophan suppressed adipogenesis. The migration and colony-forming ability of hBMSCs were also enhanced by L-tryptophan treatment. In vivo experiments delivering L-tryptophan (50 mg/kg/day) by intraperitoneal injections for three weeks confirmed that L-tryptophan significantly increased the percentage of cells positive for SSEA-4, mRNA levels of Nanog and Oct-4, and the migration and colony-forming ability of mouse BMSCs. L-kynurenine, a major metabolite of L-tryptophan, also induced similar effects of L-tryptophan in enhancing stemness and osteogenic differentiation of BMSCs in vitro and in vivo, possibly indicating the involvement of the kynurenine pathway as the downstream signaling of L-tryptophan. Finally, since BMSCs migrate to the wound healing site to promote bone healing, surgical defects of 1 mm in diameter were created in mouse femur to evaluate bone formation after two weeks of L-tryptophan or L-kynurenine injection. Both L-tryptophan and L-kynurenine accelerated bone healing compared to the PBS-injected control group. In summary, L-tryptophan enhanced the stemness and osteoblastic differentiation of BMSCs and may be used as an essential factor to maintain the stem cell properties and accelerate bone healing and/or prevent bone loss.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...