Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Microorganisms ; 12(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39203410

RESUMEN

In case of future viral threats, including the proposed Disease X that has been discussed since the emergence of the COVID-19 pandemic in March 2020, our research has focused on the development of antiviral strategies using fragrance compounds with known antiviral activity. Despite the recognized antiviral properties of mixtures of certain fragrance compounds, there has been a lack of a systematic approach to optimize these mixtures. Confronted with the significant combinatorial challenge and the complexity of the compound formulation space, we employed Bayesian optimization, guided by Gaussian Process Regression (GPR), to systematically explore and identify formulations with demonstrable antiviral efficacy. This approach required the transformation of the characteristics of formulations into quantifiable feature values using molecular descriptors, subsequently modeling these data to predict and propose formulations with likely antiviral efficacy enhancements. The predicted formulations underwent experimental testing, resulting in the identification of combinations capable of inactivating 99.99% of viruses, including a notably efficacious formulation of five distinct fragrance types. This model demonstrates high predictive accuracy (coefficient determination Rcv2 > 0.7) and suggests a new frontier in antiviral strategy development. Our findings indicate the powerful potential of computational modeling to surpass human analytical capabilities in the pursuit of complex, fragrance-based antiviral formulations.

2.
J AOAC Int ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189970

RESUMEN

BACKGROUND: Reproducibility has been well-studied in the field of food analysis; the relative standard deviation is said to follow the Horwitz curve with certain exceptions. However, little systematic research has been done on predicting repeatability or intermediate precision. OBJECTIVE: We developed a regression method to estimate within-laboratory standard deviations using hierarchical Bayesian modeling and analyzing duplicate measurement data obtained from actual laboratory tests. METHODS: The Hamiltonian Monte Carlo method was employed and implemented using R with Stan. The basic structure of the statistical model was assumed to be a chi-squared distribution, the fixed effect of the predictor was assumed to be a nonlinear function with a constant term and a concentration-dependent term, and the random effects were assumed to follow a lognormal distribution as a hierarchical prior. RESULTS: By analyzing over 300 instances, we obtained regression results that fit well with the assumed model, except for moisture, which was a method-defined analyte. The developed method applies to a wide variety of analytes measured using general principles, including spectroscopy, GC, and HPLC. Although the estimated precisions were within the HorRat(r) criteria, some cases using high-sensitivity detectors, such as mass spectrometers, showed standard deviations below that range. CONCLUSION: We propose utilizing the within-laboratory precision predicted by the model established in this study for internal quality control and measurement uncertainty estimation without considering the sample matrices. HIGHLIGHTS: Performing statistical modeling on data from double analysis, which is conducted as a part of internal quality controls, will simplify the estimation of the precision that fits each analytical system in a laboratory.

3.
J Nucl Cardiol ; 38: 101889, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852900

RESUMEN

BACKGROUND: We developed an explainable deep-learning (DL)-based classifier to identify flow-limiting coronary artery disease (CAD) by O-15 H2O perfusion positron emission tomography computed tomography (PET/CT) and coronary CT angiography (CTA) imaging. The classifier uses polar map images with numerical data and visualizes data findings. METHODS: A DLmodel was implemented and evaluated on 138 individuals, consisting of a combined image-and data-based classifier considering 35 clinical, CTA, and PET variables. Data from invasive coronary angiography were used as reference. Performance was evaluated with clinical classification using accuracy (ACC), area under the receiver operating characteristic curve (AUC), F1 score (F1S), sensitivity (SEN), specificity (SPE), precision (PRE), net benefit, and Cohen's Kappa. Statistical testing was conducted using McNemar's test. RESULTS: The DL model had a median ACC = 0.8478, AUC = 0.8481, F1S = 0.8293, SEN = 0.8500, SPE = 0.8846, and PRE = 0.8500. Improved detection of true-positive and false-negative cases, increased net benefit in thresholds up to 34%, and comparable Cohen's kappa was seen, reaching similar performance to clinical reading. Statistical testing revealed no significant differences between DL model and clinical reading. CONCLUSIONS: The combined DL model is a feasible and an effective method in detection of CAD, allowing to highlight important data findings individually in interpretable manner.


Asunto(s)
Enfermedad de la Arteria Coronaria , Aprendizaje Profundo , Radioisótopos de Oxígeno , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Masculino , Femenino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Anciano , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Angiografía Coronaria/métodos , Imagen de Perfusión Miocárdica/métodos , Angiografía por Tomografía Computarizada/métodos , Isquemia Miocárdica/diagnóstico por imagen , Sensibilidad y Especificidad
4.
PLOS Digit Health ; 3(3): e0000460, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38489375

RESUMEN

The purpose of this study is to demonstrate the use of a deep learning model in quantitatively evaluating clinical findings typically subject to uncertain evaluations by physicians, using binary test results based on routine protocols. A chest X-ray is the most commonly used diagnostic tool for the detection of a wide range of diseases and is generally performed as a part of regular medical checkups. However, when it comes to findings that can be classified as within the normal range but are not considered disease-related, the thresholds of physicians' findings can vary to some extent, therefore it is necessary to define a new evaluation method and quantify it. The implementation of such methods is difficult and expensive in terms of time and labor. In this study, a total of 83,005 chest X-ray images were used to diagnose the common findings of pleural thickening and scoliosis. A novel method for quantitatively evaluating the probability that a physician would judge the images to have these findings was established. The proposed method successfully quantified the variation in physicians' findings using a deep learning model trained only on binary annotation data. It was also demonstrated that the developed method could be applied to both transfer learning using convolutional neural networks for general image analysis and a newly learned deep learning model based on vector quantization variational autoencoders with high correlations ranging from 0.89 to 0.97.

5.
PLOS Digit Health ; 2(12): e0000391, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38064416

RESUMEN

Pancreatic cancer is one of the most adverse diseases and it is very difficult to treat because the cancer cells formed in the pancreas intertwine themselves with nearby blood vessels and connective tissue. Hence, the surgical procedure of treatment becomes complicated and it does not always lead to a cure. Histopathological diagnosis is the usual approach for cancer diagnosis. However, the pancreas remains so deep inside the body that experts sometimes struggle to detect cancer in it. Computer-aided diagnosis can come to the aid of pathologists in this scenario. It assists experts by supporting their diagnostic decisions. In this research, we carried out a deep learning-based approach to analyze histopathology images. We collected whole-slide images of KPC mice to implement this work. The pancreatic abnormalities observed in KPC mice develop similar histological features to human beings. We created random patches from whole-slide images. Then, a convolutional autoencoder framework was used to embed these patches into an integrated latent space. We applied 'information maximization', a deep learning clustering technique to cluster the identical patches in an unsupervised manner since our dataset does not have annotation. Moreover, Uniform manifold approximation and projection, a nonlinear dimension reduction technique was utilized to visualize the embedded patches in a 2-dimensional space. Finally, we calculated a few internal cluster validation metrics to determine the optimal cluster set. Our work concentrated on patch-based anomaly detection in the whole slide histopathology images of KPC mice.

6.
Front Physiol ; 14: 1156286, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228825

RESUMEN

Introduction: Given the direct association with malignant ventricular arrhythmias, cardiotoxicity is a major concern in drug design. In the past decades, computational models based on the quantitative structure-activity relationship have been proposed to screen out cardiotoxic compounds and have shown promising results. The combination of molecular fingerprint and the machine learning model shows stable performance for a wide spectrum of problems; however, not long after the advent of the graph neural network (GNN) deep learning model and its variant (e.g., graph transformer), it has become the principal way of quantitative structure-activity relationship-based modeling for its high flexibility in feature extraction and decision rule generation. Despite all these progresses, the expressiveness (the ability of a program to identify non-isomorphic graph structures) of the GNN model is bounded by the WL isomorphism test, and a suitable thresholding scheme that relates directly to the sensitivity and credibility of a model is still an open question. Methods: In this research, we further improved the expressiveness of the GNN model by introducing the substructure-aware bias by the graph subgraph transformer network model. Moreover, to propose the most appropriate thresholding scheme, a comprehensive comparison of the thresholding schemes was conducted. Results: Based on these improvements, the best model attains performance with 90.4% precision, 90.4% recall, and 90.5% F1-score with a dual-threshold scheme (active: <1µM; non-active: >30µM). The improved pipeline (graph subgraph transformer network model and thresholding scheme) also shows its advantages in terms of the activity cliff problem and model interpretability.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37022825

RESUMEN

Stage-based sleep screening is a widely-used tool in both healthcare and neuroscientific research, as it allows for the accurate assessment of sleep patterns and stages. In this paper, we propose a novel framework that is based on authoritative guidance in sleep medicine and is designed to automatically capture the time-frequency characteristics of sleep electroencephalogram (EEG) signals in order to make staging decisions. Our framework consists of two main phases: a feature extraction process that partitions the input EEG spectrograms into a sequence of time-frequency patches, and a staging phase that searches for correlations between the extracted features and the defining characteristics of sleep stages. To model the staging phase, we utilize a Transformer model with an attention-based module, which allows for the extraction of global contextual relevance among time-frequency patches and the use of this relevance for staging decisions. The proposed method is validated on the large-scale Sleep Heart Health Study dataset and achieves new state-of-the-art results for the wake, N2, and N3 stages, with respective F1 scores of 0.93, 0.88, and 0.87 using only EEG signals. Our method also demonstrates high inter-rater reliability, with a kappa score of 0.80. Moreover, we provide visualizations of the correspondence between sleep staging decisions and features extracted by our method, which enhances the interpretability of the proposal. Overall, our work represents a significant contribution to the field of automated sleep staging and has important implications for both healthcare and neuroscience research.


Asunto(s)
Fases del Sueño , Sueño , Humanos , Reproducibilidad de los Resultados , Polisomnografía/métodos , Electroencefalografía/métodos
8.
Methods ; 214: 35-45, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019293

RESUMEN

CONTEXT: Novel kinds of antibiotics are needed to combat the emergence of antibacterial resistance. Natural products (NPs) have shown potential as antibiotic candidates. Current experimental methods are not yet capable of exploring the massive, redundant, and noise-involved chemical space of NPs. In silico approaches are needed to select NPs as antibiotic candidates. OBJECTIVE: This study screens out NPs with antibacterial efficacy guided by both TCM and modern medicine and constructed a dataset aiming to serve the new antibiotic design. METHOD: A knowledge-based network is proposed in this study involving NPs, herbs, the concepts of TCM, and the treatment protocols (or etiologies) of infectious in modern medicine. Using this network, the NPs candidates are screened out and compose the dataset. Feature selection of machine learning approaches is conducted to evaluate the constructed dataset and statistically validate the im- portance of all NPs candidates for different antibiotics by a classification task. RESULTS: The extensive experiments prove the constructed dataset reaches a convincing classification performance with a 0.9421 weighted accuracy, 0.9324 recall, and 0.9409 precision. The further visu- alizations of sample importance prove the comprehensive evaluation for model interpretation based on medical value considerations.


Asunto(s)
Productos Biológicos , Medicina Tradicional China , Medicina Tradicional China/métodos , Productos Biológicos/farmacología
9.
Life (Basel) ; 13(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36836796

RESUMEN

The use of herbal medicines in recent decades has increased because their side effects are considered lower than conventional medicine. Unani herbal medicines are often used in Southern Asia. These herbal medicines are usually composed of several types of medicinal plants to treat various diseases. Research on herbal medicine usually focuses on insight into the composition of plants used as ingredients. However, in the present study, we extended to the level of metabolites that exist in the medicinal plants. This study aimed to develop a predictive model of the Unani therapeutic usage based on its constituent metabolites using deep learning and data-intensive science approaches. Furthermore, the best prediction model was then utilized to extract important metabolites for each therapeutic usage of Unani. In this study, it was observed that the deep neural network approach provided a much better prediction model than other algorithms including random forest and support vector machine. Moreover, according to the best prediction model using the deep neural network, we identified 118 important metabolites for nine therapeutic usages of Unani.

10.
Methods ; 209: 18-28, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436760

RESUMEN

Sleep screening is an important tool for both healthcare and neuroscientific research. Automatic sleep scoring is an alternative to the time-consuming gold-standard manual scoring procedure. Recently there have seen promising results on automatic stage scoring by extracting spatio-temporal features via deep neural networks from electroencephalogram (EEG). However, such methods fail to consistently yield good performance due to a missing piece in data representation: the medical criterion of the sleep scoring task on top of EEG features. We argue that capturing stage-specific features that satisfy the criterion of sleep medicine is non-trivial for automatic sleep scoring. This paper considers two criteria: Transient stage marker and Overall profile of EEG features, then we propose a physiologically meaningful framework for sleep stage scoring via mixed deep neural networks. The framework consists of two sub-networks: feature extraction networks, constructed in consideration of the physiological characteristics of sleep, and an attention-based scoring decision network. Moreover, we quantize the framework for potential use under an IoT setting. For proof-of-concept, the performance of the proposed framework is demonstrated by introducing multiple sleep datasets with the largest comprising 42,560 h recorded from 5,793 subjects. From the experiment results, the proposed method achieves a competitive stage scoring performance, especially for Wake, N2, and N3, with higher F1 scores of 0.92, 0.86, and 0.88, respectively. Moreover, the feasibility analysis of framework quantization provides a potential for future implementation in the edge computing field and clinical settings.


Asunto(s)
Redes Neurales de la Computación , Sueño , Humanos , Fases del Sueño/fisiología , Electroencefalografía/métodos
11.
Antibiotics (Basel) ; 11(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36139978

RESUMEN

Jamu is the traditional Indonesian herbal medicine system that is considered to have many benefits such as serving as a cure for diseases or maintaining sound health. A Jamu medicine is generally made from a mixture of several herbs. Natural antibiotics can provide a way to handle the problem of antibiotic resistance. This research aims to discover the potential of herbal plants as natural antibiotic candidates based on a machine learning approach. Our input data consists of a list of herbal formulas with plants as their constituents. The target class corresponds to bacterial diseases that can be cured by herbal formulas. The best model has been observed by implementing the Random Forest (RF) algorithm. For 10-fold cross-validations, the maximum accuracy, recall, and precision are 91.10%, 91.10%, and 90.54% with standard deviations 1.05, 1.05, and 1.48, respectively, which imply that the model obtained is good and robust. This study has shown that 14 plants can be potentially used as natural antibiotic candidates. Furthermore, according to scientific journals, 10 of the 14 selected plants have direct or indirect antibacterial activity.

12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1113-1116, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085834

RESUMEN

Cancer is one of the deadliest diseases worldwide. Accurate diagnosis and classification of cancer subtypes are indispensable for effective clinical treatment. Promising results on automatic cancer subtyping systems have been published recently with the emergence of various deep learning methods. However, such automatic systems often overfit the data due to the high dimensionality and scarcity. In this paper, we propose to investigate automatic subtyping from an unsupervised learning perspective by directly constructing the underlying data distribution itself, hence sufficient data can be generated to alleviate the issue of overfitting. Specifically, we bypass the strong Gaussianity assumption that typically exists but fails in the unsupervised learning subtyping literature due to small-sized samples by vector quantization. Our proposed method better captures the latent space features and models the cancer subtype manifestation on a molecular basis, as demonstrated by the extensive experimental results.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Distribución Normal , Aprendizaje Automático no Supervisado
13.
Sci Rep ; 12(1): 2839, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181681

RESUMEN

We implemented a two-dimensional convolutional neural network (CNN) for classification of polar maps extracted from Carimas (Turku PET Centre, Finland) software used for myocardial perfusion analysis. 138 polar maps from 15O-H2O stress perfusion study in JPEG format from patients classified as ischemic or non-ischemic based on finding obstructive coronary artery disease (CAD) on invasive coronary artery angiography were used. The CNN was evaluated against the clinical interpretation. The classification accuracy was evaluated with: accuracy (ACC), area under the receiver operating characteristic curve (AUC), F1 score (F1S), sensitivity (SEN), specificity (SPE) and precision (PRE). The CNN had a median ACC of 0.8261, AUC of 0.8058, F1S of 0.7647, SEN of 0.6500, SPE of 0.9615 and PRE of 0.9286. In comparison, clinical interpretation had ACC of 0.8696, AUC of 0.8558, F1S of 0.8333, SEN of 0.7500, SPE of 0.9615 and PRE of 0.9375. The CNN classified only 2 cases differently than the clinical interpretation. The clinical interpretation and CNN had similar accuracy in classifying false positives and true negatives. Classification of ischemia is feasible in 15O-H2O stress perfusion imaging using JPEG polar maps alone with a custom CNN and may be useful for the detection of obstructive CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/normas , Isquemia/diagnóstico por imagen , Anciano , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/fisiopatología , Femenino , Finlandia/epidemiología , Corazón/fisiopatología , Humanos , Isquemia/diagnóstico , Isquemia/patología , Masculino , Persona de Mediana Edad , Imagen de Perfusión Miocárdica/clasificación , Imagen de Perfusión Miocárdica/normas , Redes Neurales de la Computación , Programas Informáticos
14.
Skin Res Technol ; 28(3): 391-401, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34751451

RESUMEN

BACKGROUND: Intercellular lipids contain a lamellar structure that glows in polarized images. It could be expected that the intercellular lipid content be estimated from the luminance values calculated from polarized images of stratum corneum strips. Therefore, we attempted to develop a method for simple and rapid evaluation of the intercellular lipid content through a procedure. Herein, we demonstrated a relationship between the luminance value and the amount of ceramides, one of the main components of intercellular lipids. MATERIALS AND METHODS: The stratum corneum was collected from the forearm using slides with a pure rubber-based adhesive, which did not produce unnecessary luminescence under polarizing conditions. Images were analyzed using luminance indices. The positive secondary ion peak images were obtained using the time of flight-secondary ion mass spectrometry; the polarized and brightfield images were obtained using a polarized microscope. The ceramide and protein amount was measured by high-performance liquid chromatography and bicinchoninic acid protein assay after microscope imaging. Images and quantitative values were used to construct evaluation models based on a convolutional neural network (CNN). RESULTS: There was a correlation between the highlighted areas of the polarized image to overlap with the area where ceramide-derived peak was detected. Evaluation of the CNN-based model of the polarized images predicted the amount of ceramides per unit of stratum corneum. CONCLUSION: The method proposed in the study enabled a large number of specimens to provide a simple, rapid, and efficient evaluation of the intercellular lipid content.


Asunto(s)
Epidermis , Microscopía , Ceramidas/análisis , Cromatografía Líquida de Alta Presión , Epidermis/metabolismo , Humanos
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5928-5931, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892468

RESUMEN

Sleep screening based on the construction of sleep stages is one of the major tool for the assessment of sleep quality and early detection of sleep-related disorders. Due to the inherent variability such as inter-users anatomical variability and the inter-systems differences, representation learning of sleep stages in order to obtain the stable and reliable characteristics is runoff for downstream tasks in sleep science. In this paper, we investigated feasibility of the EEG-based symbolic representation for sleep stages. By combining the Latent Dirichlet Allocation topic model and comparing with different feature extraction methods, the work proved the feasibility of multi-topics representation for sleep stages and physiological signals.


Asunto(s)
Calidad del Sueño , Fases del Sueño , Electroencefalografía , Estudios de Factibilidad , Sueño
16.
Front Digit Health ; 3: 643042, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34713113

RESUMEN

Telework has become a universal working style under the background of COVID-19. With the increased time of working at home, problems, such as lack of physical activities and prolonged sedentary behavior become more prominent. In this situation, a self-managing working pattern regulation may be the most practical way to maintain worker's well-being. To this end, this paper validated the idea of using an Internet of Things (IoT) system (a smartphone and the accompanying smartwatch) to monitor the working status in real-time so as to record the working pattern and nudge the user to have a behavior change. By using the accelerometer and gyroscope enclosed in the smartwatch worn on the right wrist, nine-channel data streams of the two sensors were sent to the paired smartphone for data preprocessing, and action recognition in real time. By considering the cooperativity and orthogonality of the data streams, a shallow convolutional neural network (CNN) model was constructed to recognize the working status from a common working routine. As preliminary research, the results of the CNN model show accurate performance [5-fold cross-validation: 0.97 recall and 0.98 precision; leave-one-out validation: 0.95 recall and 0.94 precision; (support vector machine (SVM): 0.89 recall and 0.90 precision; random forest: 0.95 recall and 0.93 precision)] for the recognition of working status, suggesting the feasibility of this fully online method. Although further validation in a more realistic working scenario should be conducted for this method, this proof-of-concept study clarifies the prospect of a user-friendly online working tracking system. With a tailored working pattern guidance, this method is expected to contribute to the workers' wellness not only during the COVID-19 pandemic but also take effect in the post-COVID-19 era.

17.
Life (Basel) ; 11(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34440610

RESUMEN

BACKGROUND: We performed in silico prediction of the interactions between compounds of Jamu herbs and human proteins by utilizing data-intensive science and machine learning methods. Verifying the proteins that are targeted by compounds of natural herbs will be helpful to select natural herb-based drug candidates. METHODS: Initially, data related to compounds, target proteins, and interactions between them were collected from open access databases. Compounds are represented by molecular fingerprints, whereas amino acid sequences are represented by numerical protein descriptors. Then, prediction models that predict the interactions between compounds and target proteins were constructed using support vector machine and random forest. RESULTS: A random forest model constructed based on MACCS fingerprint and amino acid composition obtained the highest accuracy. We used the best model to predict target proteins for 94 important Jamu compounds and assessed the results by supporting evidence from published literature and other sources. There are 27 compounds that can be validated by professional doctors, and those compounds belong to seven efficacy groups. CONCLUSION: By comparing the efficacy of predicted compounds and the relations of the targeted proteins with diseases, we found that some compounds might be considered as drug candidates.

18.
Sci Rep ; 11(1): 14450, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262063

RESUMEN

Mental disorders (MDs), including schizophrenia (SCZ) and bipolar disorder (BD), have attracted special attention from scientists due to their high prevalence and significantly debilitating clinical features. The diagnosis of MDs is still essentially based on clinical interviews, and intensive efforts to introduce biochemical based diagnostic methods have faced several difficulties for implementation in clinics, due to the complexity and still limited knowledge in MDs. In this context, aiming for improving the knowledge in etiology and pathophysiology, many authors have reported several alterations in metabolites in MDs and other brain diseases. After potentially fishing all metabolite biomarkers reported up to now for SCZ and BD, we investigated here the proteins related to these metabolites in order to construct a protein-protein interaction (PPI) network associated with these diseases. We determined the statistically significant clusters in this PPI network and, based on these clusters, we identified 28 significant pathways for SCZ and BDs that essentially compose three groups representing three major systems, namely stress response, energy and neuron systems. By characterizing new pathways with potential to innovate the diagnosis and treatment of psychiatric diseases, the present data may also contribute to the proposal of new intervention for the treatment of still unmet aspects in MDs.


Asunto(s)
Trastorno Bipolar , Mapas de Interacción de Proteínas , Esquizofrenia , Humanos
19.
Comput Methods Programs Biomed ; 205: 106102, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33933712

RESUMEN

BACKGROUND AND OBJECTIVE: Malignant ventricular arrhythmias (MAs) occur unpredictably and lead to emergencies. A new approach that uses a timely tracking device e.g., photoplethysmogram (PPG) solely to predict MAs would be irreplaceably valuable and it is natural to expect the approach can predict the occurrence as early as possible. METHOD: We assumed that with an appropriate metric based on signal complexity, the heartbeat interval time series (HbIs) can be used to manifest the intrinsic characteristics of the period immediately precedes the MAs (preMAs). The approach first characterizes the patterns of preMAs by a new complexity metric (the refined composite multi-scale entropy). The MAs detector is then constructed by checking the discriminability of the MAs against the sinus rhythm and other prevalent arrhythmias (atrial fibrillation and premature ventricular contraction) of three machine-learning models (SVM, Random Forest, and XGboost). RESULTS: Two specifications are of interest: the length of the HbIs needed to delineate the preMAs patterns sufficiently (lspec) and how long before the occurrence of MAs will the HbIs manifest specific patterns that are distinct enough to predict the impending MAs (tspec). Our experimental results confirmed the best performance came from a Random-Forest model with an average precision of 99.99% and recall of 88.98% using a HbIs of 800 heartbeats (the lspec), 108 seconds (the tspec) before the occurrence of MAs. CONCLUSION: By experimental validation of the unique pattern of the preMAs in HbIs and using it in the machine learning model, we showed the high possibility of MAs prediction in a broader circumstance, which may cover daily healthcare using the alternative sensor in HbIs monitoring. Therefore, this research is theoretically and practically significant in cardiac arrest prevention.


Asunto(s)
Fibrilación Atrial , Paro Cardíaco , Complejos Prematuros Ventriculares , Estudios de Factibilidad , Frecuencia Cardíaca , Humanos , Complejos Prematuros Ventriculares/diagnóstico
20.
BMC Med Inform Decis Mak ; 21(1): 163, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016115

RESUMEN

BACKGROUND: Sepsis is a severe illness that affects millions of people worldwide, and its early detection is critical for effective treatment outcomes. In recent years, researchers have used models to classify positive patients or identify the probability for sepsis using vital signs and other time-series variables as input. METHODS: In our study, we analyzed patients' conditions by their kinematics position, velocity, and acceleration, in a six-dimensional space defined by six vital signs. The patient is affected by the disease after a period if the position gets "near" to a calculated sepsis position in space. We imputed these kinematics features as explanatory variables of long short-term memory (LSTM), convolutional neural network (CNN) and linear neural network (LNN) and compared the prediction accuracies with only the vital signs as input. The dataset used contained information of approximately 4800 patients, each with 48 hourly registers. RESULTS: We demonstrated that the kinematics features models had an improved performance compared with vital signs models. The kinematics features model of LSTM achieved the best accuracy, 0.803, which was nine points higher than the vital signs model. Although with lesser accuracies, the kinematics features models of the CNN and LNN showed better performances than vital signs models. CONCLUSION: Applying our novel approach for early detection of sepsis using neural networks will prove to be an invaluable, more accurate method than considering only simple vital signs as input variables. We expect that other researchers with similar objectives can use the model presented in this innovative approach to improve their results.


Asunto(s)
Redes Neurales de la Computación , Sepsis , Fenómenos Biomecánicos , Diagnóstico Precoz , Humanos , Sepsis/diagnóstico , Signos Vitales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA