Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37028805

RESUMEN

INTRODUCTION: This study aimed to evaluate the impacts of dapagliflozin on 24-hour glucose variability and diabetes-related biochemical variables in Japanese patients with type 2 diabetes who had received basal insulin supported oral therapy (BOT). RESEARCH DESIGN AND METHODS: Changes in mean daily blood glucose level before and after 48-72 hours of add-on or no add-on of dapagliflozin (primary end point) and diabetes-related biochemical variables and major safety variables during the 12 weeks (secondary end point) were evaluated in the multicenter, randomized, two-arm, open-label, parallel-group comparison study. RESULTS: Among 36 participants, 18 were included in the no add-on group and 18 were included in the dapagliflozin add-on group. Age, gender, and body mass index were comparable between the groups. There were no changes in continuous glucose monitoring metrics in the no add-on group. In the dapagliflozin add-on group, mean glucose (183-156 mg/dL, p=0.001), maximum glucose (300-253, p<0.01), and SD glucose (57-45, p<0.05) decreased. Time in range increased (p<0.05), while time above the range decreased in the dapagliflozin add-on group but not in the no add-on group. After 12-week treatment with dapagliflozin add-on, 8-hydroxy-2'-deoxyguanosine (8OHdG), as well as hemoglobin A1c (HbA1c), decreased. CONCLUSIONS: This study showed that the mean daily blood glucose and other daily glucose profiles were amended after 48-72 hours of dapagliflozin add-on in Japanese patients with type 2 diabetes who received BOT. The diabetes-related biochemical variables such as HbA1c and urinary 8OHdG were also obtained during the 12 weeks of dapagliflozin add-on without major adverse events. A preferable 24-hour glucose profile in 'time in ranges' and an improvement in reactive oxygen species by dapagliflozin warrant us to evaluate these benefits in larger clinical studies. TRIAL REGISTRATION NUMBER: UMIN000019457.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinas , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucemia , Hipoglucemiantes/uso terapéutico , Hemoglobina Glucada , Automonitorización de la Glucosa Sanguínea , 8-Hidroxi-2'-Desoxicoguanosina/uso terapéutico , Pueblos del Este de Asia , Resultado del Tratamiento , Insulinas/uso terapéutico
2.
J Biol Chem ; 298(3): 101585, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032549

RESUMEN

Dipeptide production from extracellular proteins is crucial for Porphyromonas gingivalis, a pathogen related to chronic periodontitis, because its energy production is entirely dependent on the metabolism of amino acids predominantly incorporated as dipeptides. These dipeptides are produced by periplasmic dipeptidyl-peptidase (DPP)4, DPP5, DPP7, and DPP11. Although the substrate specificities of these four DPPs cover most amino acids at the penultimate position from the N terminus (P1), no DPP is known to cleave penultimate Gly, Ser, Thr, or His. Here, we report an expanded substrate preference of bacterial DPP7 that covers those residues. MALDI-TOF mass spectrometry analysis demonstrated that DPP7 efficiently degraded incretins and other gastrointestinal peptides, which were successively cleaved at every second residue, including Ala, Gly, Ser, and Gln, as well as authentic hydrophobic residues. Intravenous injection of DPP7 into mice orally administered glucose caused declines in plasma glucagon-like peptide-1 and insulin, accompanied by increased blood glucose levels. A newly developed coupled enzyme reaction system that uses synthetic fluorogenic peptides revealed that the P1' and P2' residues of substrates significantly elevated kcat values, providing an expanded substrate preference. This activity enhancement was most effective toward the substrates with nonfavorable but nonrepulsive P1 residues in DPP7. Enhancement of kcat by prime-side residues was also observed in DPP11 but not DPP4 and DPP5. Based on this expanded substrate specificity, we demonstrate that a combination of DPPs enables proteolytic liberation of all types of N-terminal dipeptides and ensures P. gingivalis growth and pathogenicity.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Péptidos , Porphyromonas gingivalis , Aminoácidos/metabolismo , Animales , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/farmacología , Ratones , Porphyromonas gingivalis/enzimología , Especificidad por Sustrato
3.
Biochimie ; 163: 50-57, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31078584

RESUMEN

Acylpeptidyl-oligopeptidase (AOP), which has been recently identified as a novel enzyme in a periodontopathic bacterium, Porphyromonas gingivalis, removes di- and tri-peptides from N-terminally acylated polypeptides, with a preference for hydrophobic P1-position amino acid residues. To validate enzymatic properties of AOP, characteristics of two bacterial orthologues from Bacteroides dorei (BdAOP), a Gram-negative intestinal rod, and Lysinibacillus sphaericus (LsAOP), a Gram-positive soil rod, were determined. Like P. gingivalis AOP (PgAOP), two orthologues more efficiently hydrolyzed N-terminal acylated peptidyl substrates than non-acylated ones. Optimal pH was shifted from 7.0 to 8.9 for N-acylated to 8.5-9.5 for non-acylated substrates, indicating preference for non-charged hydrophobic N-terminal residues. Hydrophobic P1- and P2-position preferences were common in the three AOPs, although PgAOP preferred Leu and the others preferred Phe at the P1 position. In vitro mutagenesis demonstrated that Phe647 in PgAOP was responsible for the P1 Leu preference. In addition, bacterial AOPs commonly liberated acetyl-Ser1-Tyr2 from α-melanocyte-stimulating hormone. Taken together, although these three bacterial AOPs exhibited some variations in biochemical properties, the present study demonstrated the existence of a group of exopeptidases that preferentially liberates mainly dipeptides from N-terminally acylated polypeptides with a preference for hydrophobic P1 and P2-position residues.


Asunto(s)
Péptido Hidrolasas/metabolismo , Porphyromonas gingivalis/enzimología , Bacillaceae/enzimología , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Hidrólisis , Cinética , Péptido Hidrolasas/efectos de los fármacos , Especificidad por Sustrato
4.
Anal Biochem ; 548: 78-81, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29432753

RESUMEN

Bacterial dipeptidyl-peptidase (DPP) 7 liberates a dipeptide with a preference for aliphatic and aromatic penultimate residues from the N-terminus. Although synthetic substrates are useful for activity measurements, those currently used are problematic, because they are more efficiently degraded by DPP5. We here aimed to develop a potent and specific substrate and found that the kcat/Km value for Phe-Met-methylcoumaryl-7-amide (MCA) (41.40 ±â€¯0.83 µM-1 s-1) was highest compared to Met-Leu-, Leu-Leu-, and Phe-Leu-MCA (1.06-3.77 µM-1 s-1). Its hydrolyzing activity was abrogated in a Porphyromonas gingivalis dpp7-knockout strain. Conclusively, we propose Phe-Met-MCA as an ideal synthetic substrate for DPP7.


Asunto(s)
Proteínas Bacterianas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Péptidos/química , Porphyromonas gingivalis/enzimología , Especificidad por Sustrato
5.
Biochimie ; 147: 25-35, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29080830

RESUMEN

Peptidase family S46 consists of two types of dipeptidyl-peptidases (DPPs), DPP7 and DPP11, which liberate dipeptides from the N-termini of polypeptides along with the penultimate hydrophobic and acidic residues, respectively. Their specificities are primarily defined by a single amino acid residue, Gly673 in DPP7 and Arg673 in DPP11 (numbering for Porphyromonas gingivalis DPP11). Bacterial species in the phyla Proteobacteria and Bacteroidetes generally possess one gene for each, while Bacteroides species exceptionally possess three genes, one gene as DPP7 and two genes as DPP11, annotated based on the full-length similarities. In the present study, we aimed to characterize the above-mentioned Bacteroides S46 DPPs. A recombinant protein of the putative DPP11 gene BF9343_2924 from Bacteroides fragilis harboring Gly673 exhibited DPP7 activity by hydrolyzing Leu-Leu-4-methylcoumaryl-7-amide (MCA). Another gene, BF9343_2925, as well as the Bacteroides vulgatus gene (BVU_2252) with Arg673 was confirmed to encode DPP11. These results demonstrated that classification of S46 peptidase is enforceable by the S1 essential residues. Bacteroides DPP11 showed a decreased level of activity towards the substrates, especially with P1-position Glu. Findings of 3D structural modeling indicated three potential amino acid substitutions responsible for the reduction, one of which, Asn650Thr substitution, actually recovered the hydrolyzing activity of Leu-Glu-MCA. On the other hand, the gene currently annotated as DPP7 carrying Gly673 from B. fragilis (BF9343_0130) and Bacteroides ovatus (Bovatus_03382) did not hydrolyze any of the examined substrates. The existence of a phylogenic branch of these putative Bacteroides DPP7 genes classified by the C-terminal conserved region (Ser571-Leu700) strongly suggests that Bacteroides species expresses a DPP with an unknown property. In conclusion, the genus Bacteroides exceptionally expresses three S46-family members; authentic DPP7, a new subtype of DPP11 with substantially reduced specificity for Glu, and a third group of S46 family members.


Asunto(s)
Bacteroides/enzimología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Secuencia de Aminoácidos , Hidrólisis , Especificidad de la Especie
6.
Infect Immun ; 85(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28630069

RESUMEN

Severe periodontitis is known to aggravate diabetes mellitus, though molecular events related to that link have not been fully elucidated. Porphyromonas gingivalis, a major pathogen of periodontitis, expresses dipeptidyl peptidase 4 (DPP4), which is involved in regulation of blood glucose levels by cleaving incretins in humans. We examined the enzymatic characteristics of DPP4 from P. gingivalis as well as two other periodontopathic bacteria, Tannerella forsythia and Prevotella intermedia, and determined whether it is capable of regulating blood glucose levels. Cell-associated DPP4 activity was found in those microorganisms, which was effectively suppressed by inhibitors of human DPP4, and molecules sized 73 kDa in P. gingivalis, and 71 kDa in T. forsythia and P. intermedia were immunologically detected. The kcat/Km values of recombinant DPP4s ranged from 721 ± 55 to 1,283 ± 23 µM-1s-1 toward Gly-Pro-4-methylcoumaryl-7-amide (MCA), while those were much lower for His-Ala-MCA. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis showed His/Tyr-Ala dipeptide release from the N termini of incretins, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide, respectively, with the action of microbial DPP4. Moreover, intravenous injection of DPP4 into mice decreased plasma active GLP-1 and insulin levels, accompanied by a substantial elevation in blood glucose over the control after oral glucose administration. These results are the first to show that periodontopathic bacterial DPP4 is capable of modulating blood glucose levels the same as mammalian DPP4; thus, the incidence of periodontopathic bacteremia may exacerbate diabetes mellitus via molecular events of bacterial DPP4 activities.


Asunto(s)
Glucemia , Dipeptidil Peptidasa 4/metabolismo , Incretinas/metabolismo , Porphyromonas gingivalis/enzimología , Prevotella intermedia/enzimología , Tannerella forsythia/enzimología , Animales , Dipeptidil Peptidasa 4/genética , Femenino , Polipéptido Inhibidor Gástrico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Insulina/sangre , Ratones Endogámicos C57BL , Proteolisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Sci Rep ; 5: 15327, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26468930

RESUMEN

Geometric frustration, in which competing interactions give rise to degenerate ground states, potentially induces various exotic quantum phenomena in magnetic materials. Minimal models comprising triangular units, such as triangular and Kagome lattices, have been investigated for decades to realize novel quantum phases, such as quantum spin liquid. A pentagon is the second-minimal elementary unit for geometric frustration. The realization of such systems is expected to provide a distinct platform for studying frustrated magnetism. Here, we present a spin-1/2 quantum pentagonal lattice in the new organic radical crystal α-2,6-Cl2-V [=α-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl]. Its unique molecular arrangement allows the formation of a partially corner-shared pentagonal lattice (PCPL). We find a clear 1/3 magnetization plateau and an anomalous change in magnetization in the vicinity of the saturation field, which originate from frustrated interactions in the PCPL.

8.
J Biol Chem ; 289(9): 5436-48, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24398682

RESUMEN

Porphyromonas gingivalis, a Gram-negative asaccharolytic anaerobe, is a major causative organism of chronic periodontitis. Because the bacterium utilizes amino acids as energy and carbon sources and incorporates them mainly as dipeptides, a wide variety of dipeptide production processes mediated by dipeptidyl-peptidases (DPPs) should be beneficial for the organism. In the present study, we identified the fourth P. gingivalis enzyme, DPP5. In a dpp4-7-11-disrupted P. gingivalis ATCC 33277, a DPP7-like activity still remained. PGN_0756 possessed an activity indistinguishable from that of the mutant, and was identified as a bacterial orthologue of fungal DPP5, because of its substrate specificity and 28.5% amino acid sequence identity with an Aspergillus fumigatus entity. P. gingivalis DPP5 was composed of 684 amino acids with a molecular mass of 77,453, and existed as a dimer while migrating at 66 kDa on SDS-PAGE. It preferred Ala and hydrophobic residues, had no activity toward Pro at the P1 position, and no preference for hydrophobic P2 residues, showed an optimal pH of 6.7 in the presence of NaCl, demonstrated Km and kcat/Km values for Lys-Ala-MCA of 688 µM and 11.02 µM(-1) s(-1), respectively, and was localized in the periplasm. DPP5 elaborately complemented DPP7 in liberation of dipeptides with hydrophobic P1 residues. Examinations of DPP- and gingipain gene-disrupted mutants indicated that DPP4, DPP5, DPP7, and DPP11 together with Arg- and Lys-gingipains cooperatively liberate most dipeptides from nutrient oligopeptides. This is the first study to report that DPP5 is expressed not only in eukaryotes, but also widely distributed in bacteria and archaea.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Periplasma , Proteínas Periplasmáticas , Porphyromonas gingivalis , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/genética , Catálisis , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Periplasma/enzimología , Periplasma/genética , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/genética , Homología de Secuencia de Aminoácido
9.
FEBS Open Bio ; 3: 177-83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23772391

RESUMEN

Dipeptidyl peptidases (DPPs) are crucial for the energy metabolism in Porphyromonas gingivalis, a Gram-negative proteolytic and asaccharolytic anaerobic rod causing chronic periodontitis. Three DPPs, DPPIV specific for Pro, DPP7 for hydrophobic residues and DPP11 for Asp/Glu at the P1 position, are expressed in the bacterium. Like DPP7, DPP11 belongs to the S46 protease family, and they share 38.7% sequence identity. Although DPP11 is preferential for hydrophobic residues at the P2 position, it has been reported that DPP7 has no preference at the P2 position. In the present study, we defined the detailed P2 substrate preference of DPP7 and the amino acid residue responsible for the specificity. DPP7 most efficiently hydrolyzed Met-Leu-dipeptidyl-4-methylcoumaryl-7-amide (MCA) carrying hydrophobic residues at the P1 position with k cat/Km of 10.62 ± 2.51 µM(-1) s(-1), while it unexpectedly cleaved substrates with hydrophilic (Gln, Asn) or charged (Asp, Arg) residues. Examination with 21 dipeptidyl MCA demonstrated that DPP7-peptidase activity was dependent on hydrophobicity of the P2- as well as P1-position residue, thus it correlated best with the sum of the hydrophobicity index of P1- and P2-amino acid residues. Hydrophobicity of the P1 and P2 positions ensured efficient enzyme catalysis by increasing k cat and lowering Km values, respectively. Substitution of hydrophobic residues conserved in the S46 DPP7/DPP11 family to Ala revealed that Phe664 of DPP7 and Phe671 of DPP11 primarily afforded hydrophobic P2 preference. A modeling study suggested that Phe664 and Gly666 of DPP7 and Phe671 and Arg673 of DPP11 being associated with the P2- and P1-position residues, respectively, are located adjacent to the catalytic Ser648/Ser655. The present results expand the substrate repertoire of DPP7, which ensures efficient degradation of oligopeptides in asaccharolytic bacteria.

10.
Biochimie ; 95(4): 824-32, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23246913

RESUMEN

Porphyromonas gingivalis, an asaccharolytic gram-negative rod-shaped bacterium, expresses the novel Asp/Glu-specific dipeptidyl-peptidase (DPP) 11 (Ohara-Nemoto, Y. et al. (2011) J. Biol. Chem. 286, 38115-38127), which has been categorized as a member of the S46/DPP7 family that is preferential for hydrophobic residues at the P1 position. From that finding, 129 gene products constituting five clusters from the phylum Bacteroidetes have been newly annotated to either DPP7 or DPP11, whereas the remaining 135 members, mainly from the largest phylum Proteobacteria, have yet to be assigned. In this study, the substrate specificities of the five clusters and an unassigned group were determined with recombinant DPPs from typical species, i.e., P. gingivalis, Capnocytophaga gingivalis, Flavobacterium psychrophilum, Bacteroides fragilis, Bacteroides vulgatus, and Shewanella putrefaciens. Consequently, clusters 1, 3, and 5 were found to be DPP7 with rather broad substrate specificity, and clusters 2 and 4 were DPP11. An unassigned S. putrefaciens DPP carrying Ser(673) exhibited Asp/Glu-specificity more preferable to Glu, in contrast to the Asp preference of DPP11 with Arg(673) from Bacteroidetes species. Mutagenesis experiments revealed that Arg(673)/Ser(673) were indispensable for the Asp/Glu-specificity of DPP11, and that the broad specificity of DPP7 was mediated by Gly(673). Taken together with the distribution of the two genes, all 264 members of the S46 family could be attributed to either DPP7 or DPP11 by an amino acid at position 673. A more compelling phylogenic tree based on the conserved C-terminal region suggested two gene duplication events in the phylum Bacteroidetes, one causing the development of DPP7 and DPP11 with altered substrate specificities, and the other producing an additional DPP7 in the genus Bacteroides.


Asunto(s)
Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Ambiente , Bacterias Gramnegativas/enzimología , Secuencia de Aminoácidos , Arginina , Regulación Bacteriana de la Expresión Génica , Glicina , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/genética , Datos de Secuencia Molecular , Filogenia , Serina , Especificidad por Sustrato
11.
J Biol Chem ; 286(44): 38115-38127, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21896480

RESUMEN

Porphyromonas gingivalis and Porphyromonas endodontalis, asaccharolytic black-pigmented anaerobes, are predominant pathogens of human chronic and periapical periodontitis, respectively. They incorporate di- and tripeptides from the environment as carbon and energy sources. In the present study we cloned a novel dipeptidyl peptidase (DPP) gene of P. endodontalis ATCC 35406, designated as DPP11. The DPP11 gene encoded 717 amino acids with a molecular mass of 81,090 Da and was present as a 75-kDa form with an N terminus of Asp(22). A homology search revealed the presence of a P. gingivalis orthologue, PGN0607, that has been categorized as an isoform of authentic DPP7. P. gingivalis DPP11 was exclusively cell-associated as a truncated 60-kDa form, and the gene ablation retarded cell growth. DPP11 specifically removed dipeptides from oligopeptides with the penultimate N-terminal Asp and Glu and has a P2-position preference to hydrophobic residues. Optimum pH was 7.0, and the k(cat)/K(m) value was higher for Asp than Glu. Those activities were lost by substitution of Ser(652) in P. endodontalis and Ser(655) in P. gingivalis DPP11 to Ala, and they were consistently decreased with increasing NaCl concentration. Arg(670) is a unique amino acid completely conserved in all DPP11 members distributed in the genera Porphyromonas, Bacteroides, and Parabacteroides, whereas this residue is converted to Gly in all authentic DPP7 members. Substitution analysis suggested that Arg(670) interacts with an acidic residue of the substrate. Considered to preferentially utilize acidic amino acids, DPP11 ensures efficient degradation of oligopeptide substrates in these Gram-negative anaerobic rods.


Asunto(s)
Ácido Aspártico/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Ácido Glutámico/química , Porphyromonas gingivalis/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Regulación Bacteriana de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Estructura Terciaria de Proteína , Proteínas/metabolismo , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido
12.
Biol Chem ; 391(10): 1221-32, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20707600

RESUMEN

The glutamyl endopeptidase family of enzymes from staphylococci has been shown to be important virulence determinants of pathogenic family members, such as Staphylococcus aureus. Previous studies have identified the N-terminus and residues from positions 185-195 as potentially important regions that determine the activity of three members of the family. Cloning and sequencing of the new family members from Staphylococcus caprae (GluScpr) and Staphylococcus cohnii (GluScoh) revealed that the N-terminal Val residue is maintained in all family members. Mutants of the GluV8 enzyme from S. aureus with altered N-terminal residues, including amino acids with similar properties, were inactive, indicating that the Val residue is specifically required at the N-terminus of this enzyme family in order for them to function correctly. Recombinant GluScpr was found to have peptidase activity intermediate between GluV8 and GluSE from Staphylococcus epidermis and to be somewhat less specific in its substrate requirements than other family members. The 185-195 region was found to contribute to the activity of GluScpr, although other regions of the enzyme must also play a role in defining the activity. Our results strongly indicate the importance of the N-terminal and the 185-195 region in the activity of the glutamyl endopeptidases of staphylococci.


Asunto(s)
Aminoácidos/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Staphylococcus aureus/enzimología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Clonación Molecular , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Ácido Nucleico , Serina Endopeptidasas/genética , Staphylococcus aureus/genética
13.
Biol Chem ; 390(3): 277-85, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19090719

RESUMEN

Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus warneri secrete glutamyl endopeptidases, designated GluV8, GluSE, and GluSW, respectively. The order of their protease activities is GluSE < GluSW << GluV8. In the present study, we investigated the mechanism that causes these differences. Expression of chimeric proteins between GluV8 and GluSE revealed that the difference is primarily attributed to amino acid residues 170-195, which define the intrinsic protease activity, and additionally to residues 119-169, which affect the proteolytic sensitivity. Among nine substitutions present in residues 170-195 of the three proteases, the substitutions at positions 185, 188, and 189 were responsible for the changes in their activities, and the combination of W185, V188, and P189, which naturally occurs in GluV8, exerts the highest protease activity. W185 and P189 were indispensable for full activity, but V188 could be replaced by hydrophobic amino acids. These three amino acid residues appear to create a substrate-binding pocket together with the catalytic triad and the N-terminal V1, and therefore define the K(m) values of the proteases. We also describe a method to produce a chimeric form of GluSE and GluV8 that is resistant to proteolysis, and therefore possesses 4-fold higher activity than the wild-type recombinant GluV8.


Asunto(s)
Aminoácidos/metabolismo , Serina Endopeptidasas/metabolismo , Staphylococcus/enzimología , Secuencia de Aminoácidos , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/química
14.
Biol Chem ; 389(9): 1209-17, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18783343

RESUMEN

The extracellular serine endopeptidase GluSE (EC 3.4.21.19) is considered to be one of the virulence factors of Staphylococcus epidermidis. The present study investigated maturation processing of native GluSE and that heterologously expressed in Escherichia coli. In addition to the 28-kDa mature protease, small amounts of proenzymes with molecular masses of 32, 30, and 29 kDa were identified in the extracellular and cell wall-associated fractions. We defined the pre (M1-A27)- and pro (K28-S66)-segments, and found that processing at the E32-S33 and D48-I49 bonds was responsible for production of the 30- and 29-kDa intermediates, respectively. The full-length form of C-terminally His-tagged GluSE was purified as three proenzymes equivalent to the native ones. These molecules possessing an entire or a part of the pro-segment were proteolytically latent and converted to a mature 28-kDa form by thermolysin cleavage at the S66-V67 bond. Mutation of the essential amino acid S235 suggested auto-proteolytic production of the 30- and 29-kDa intermediates. Furthermore, an undecapeptide (I56-S66) of the truncated pro-segment not only functions as an inhibitor of the protease but also facilitates thermolysin processing. These findings could offer clues to the molecular mechanism involved in the regulation of proteolytic activity of pathogenic proteases secreted from S. epidermidis.


Asunto(s)
Serina Endopeptidasas/metabolismo , Staphylococcus epidermidis/enzimología , Electroforesis en Gel Bidimensional , Escherichia coli/genética , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Staphylococcus epidermidis/metabolismo
15.
Anal Biochem ; 381(1): 74-80, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18616923

RESUMEN

V8 protease (GluV8), a member of the glutamyl endopeptidase I family isolated from the V8 strain of Staphylococcus aureus, is widely used for proteome analysis because of its unique substrate specificity and resistance to detergents. We recently developed an Escherichia coli expression system for the production of GluV8 based on a technique that suppresses the autoproteolysis--the use of the prosequence of its homologue (GluSE) from Staphylococcus epidermidis as a chimeric form or the introduction of four substitutions in the prosequence of GluV8. In the current study, we refined this technique through five amino acid substitutions within the prosequence of GluV8 for complete suppression of the autodegradation. As a result, the recovery of GluV8 proform was enhanced to 20 fg/cell, which was comparable to the level of a constitutive inactive form of GluV8, indicating complete suppression of the autoproteolysis. This mutated propeptide was also effective for the expression of the mature sequence of the glutamyl endopeptidase from Staphylococcus warneri. The recombinant proteins were successfully converted to their active forms through a common cleavage mechanism mediated by thermolysin in vitro. This strategy may shed light on the way for the expression of the proteases that have been scarcely produced in E. coli to date.


Asunto(s)
Bioquímica/métodos , Escherichia coli/metabolismo , Procesamiento Proteico-Postraduccional , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Activación Enzimática/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/aislamiento & purificación , Staphylococcus aureus/enzimología , Staphylococcus epidermidis/enzimología , Especificidad por Sustrato/efectos de los fármacos , Termolisina/farmacología
16.
FEBS J ; 275(3): 573-87, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18199287

RESUMEN

V8 protease, a member of the glutamyl endopeptidase I family, of Staphylococcus aureus V8 strain (GluV8) is widely used for proteome analysis because of its unique substrate specificity and resistance to detergents. In this study, an Escherichia coli expression system for GluV8, as well as its homologue from Staphylococcus epidermidis (GluSE), was developed, and the roles of the prosegments and two specific amino acid residues, Val69 and Ser237, were investigated. C-terminal His(6)-tagged proGluSE was successfully expressed from the full-length sequence as a soluble form. By contrast, GluV8 was poorly expressed by the system as a result of autodegradation; however, it was efficiently obtained by swapping its preprosegment with that of GluSE, or by the substitution of four residues in the GluV8 prosequence with those of GluSE. The purified proGluV8 was converted to the mature form in vitro by thermolysin treatment. The prosegment was essential for the suppression of proteolytic activity, as well as for the correct folding of GluV8, indicating its role as an intramolecular chaperone. Furthermore, the four amino acid residues at the C-terminus of the prosegment were sufficient for both of these roles. In vitro mutagenesis revealed that Ser237 was essential for proteolytic activity, and that Val69 was indispensable for the precise cleavage by thermolysin and was involved in the proteolytic reaction itself. This is the first study to express quantitatively GluV8 in E. coli, and to demonstrate explicitly the intramolecular chaperone activity of the prosegment of glutamyl endopeptidase I.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Serina Endopeptidasas/metabolismo , Staphylococcus aureus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico/genética , Electroforesis en Gel de Poliacrilamida , Immunoblotting , Datos de Secuencia Molecular , Mutagénesis , Mutación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Serina/química , Serina/genética , Serina/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Staphylococcus aureus/genética , Staphylococcus epidermidis/enzimología , Staphylococcus epidermidis/genética , Relación Estructura-Actividad , Termolisina/farmacología
17.
J Biochem ; 139(4): 677-87, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16672268

RESUMEN

The 70-kDa heat shock protein (Hsp70) is predominantly present intracellularly as a monomer, but a small population is converted to dimers and oligomers under certain conditions. In the present study, we investigated the dimeric structure of human inducible Hsp70. As reported earlier, the C-terminal client-binding domain (amino acids 382-641) was required for the dimerization. A 40-amino acid deletion in the client-binding domain from either the N-terminus or C-terminus greatly enhanced the dimerization potential of Hsp70. Limited proteolysis indicated that the dimer formed through truncation from the C-terminus had a conformation similar to that of the non-truncated form. Truncation experiments demonstrated that the client-binding sub-domain (amino acids 382-520) with its adjacent region up to amino acid 541 was not sufficient for the dimerization but that the region up to amino acid 561 was sufficient. Interestingly, the dimer formed through truncation from the C-terminus acquired a homomeric disulfide bridge at Cys574.


Asunto(s)
Cisteína/química , Disulfuros/química , Proteínas HSP70 de Choque Térmico/química , Secuencia de Aminoácidos , Cromatografía en Gel , Dimerización , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Immunoblotting , Peso Molecular , Plásmidos/genética , Unión Proteica , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
Matrix Biol ; 24(3): 239-44, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15922911

RESUMEN

Old hen tendon provides a model suitable for the study of calcification in an extracellular matrix. In the present study, we observed the mineralizing substances of hen tendon by scanning electron microscopy of plasma-osmium-coated specimens and by transmission electron microscopy of those processed by a plasma-polymerization film replica method. The mineralizing front area revealed a number of elliptical particles fused to each other and forming rod-like structures oriented parallel to collagen fibrils. The area of advanced mineralization possessed non-mineralizing cavities, in which tendon cells were likely to exist. At this site, we recognized a second form of mineral structure, one in which the crystals had a scale-like morphology and were deposited onto the major first-form mineral component. This crystal form was similar to hydroxyapatite synthesized under wet reaction conditions. These findings strongly suggest that the second form of mineral formed independent of collagen fibrils existed together with the predominant, collagen-dependent form of mineral. We speculate that cell membranes and an extremely slow mineralization process may contribute to the formation of this form of mineral during the mineralization process in the hen tendon.


Asunto(s)
Apatitas/metabolismo , Calcificación Fisiológica , Tendones/metabolismo , Animales , Pollos , Femenino , Miembro Posterior , Microscopía Electrónica , Microscopía Electrónica de Rastreo , Tendones/ultraestructura
19.
Biochemistry ; 43(23): 7628-36, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15182205

RESUMEN

We here investigated the mechanism of self-oligomerization of the 90-kDa heat shock protein (HSP90) molecular chaperone, because it is known that this oligomerization reflects the client-binding activity. The transition temperatures for the self-oligomerization of the full-length forms of human HSP90alpha and HtpG (bacterial HSP90), i.e., 45 and 60 degrees C, respectively, were identical to those for the dissociation of the recombinant N domain (residues 1-400 of human HSP90alpha and residues 1-336 of HtpG in our definition) from the remainder of the molecule. The N domain of human HSP90alpha expressed in Escherichia coli was oligomeric, and the oligomerization activity was localized within residues 311-350, i.e., C-terminally adjacent to the highly immunogenic site (residues 291-304). Particularly, residues 341-350 were critical on oligomerization. On the other hand, residues 289-389 were indispensable for the interaction with the M domain (residues 401-618) of the molecule. Oligomer formation of the N domain was efficiently suppressed by its extension until Lys546, i.e., residues 401-546, which is required for the interaction with the N domain. Among highly conserved amino acids at residues 289-400, Trp297, Pro379, and Phe384 were essential for the interaction with the M domain. With these observations taken together, we propose as the activation mechanism of HSP90 molecular chaperone that heat stress induces the liberation of the oligomerization/client-binding site of residues 311-350 by disrupting the intramolecular interaction between residues 289-389 and 401-546.


Asunto(s)
Proteínas de Escherichia coli , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/inmunología , Humanos , Mutación/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
20.
Eur J Biochem ; 270(1): 146-54, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12492485

RESUMEN

The alpha isoform of human 90-kDa heat shock protein (HSP90alpha) is composed of three domains: the N-terminal (residues 1-400); middle (residues 401-615) and C-terminal (residues 621-732). The middle domain is simultaneously associated with the N- and C-terminal domains, and the interaction with the latter mediates the dimeric configuration of HSP90. Besides one in the N-terminal domain, an additional client-binding site exists in the C-terminal domain of HSP90. The aim of the present study is to elucidate the regions within the C-terminal domain responsible for the bindings to the middle domain and to a client protein, and to define the relationship between the two functions. A bacterial two-hybrid system revealed that residues 650-697 of HSP90alpha were essential for the binding to the middle domain. An almost identical region (residues 657-720) was required for the suppression of heat-induced aggregation of citrate synthase, a model client protein. Replacement of either Leu665-Leu666 or Leu671-Leu672 to Ser-Ser within the hydrophobic segment (residues 662-678) of the C-terminal domain caused the loss of bindings to both the middle domain and the client protein. The interaction between the middle and C-terminal domains was also found in human 94-kDa glucose-regulated protein. Moreover, Escherichia coli HtpG, a bacterial HSP90 homologue, formed heterodimeric complexes with HSP90alpha and the 94-kDa glucose-regulated protein through their middle-C-terminal domains. Taken together, it is concluded that the identical region including the hydrophobic segment of the C-terminal domain is essential for both the client binding and dimer formation of the HSP90-family molecular chaperone and that the dimeric configuration appears to be similar in the HSP90-family proteins.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Bacterias/genética , Sitios de Unión , Dimerización , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Interacciones Hidrofóbicas e Hidrofílicas , Leucina/química , Leucina/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Serina/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...