Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Mater ; 14(4): 045006, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30959495

RESUMEN

Chronic wounds are a global health problem, and their treatments are difficult and long lasting. The development of medical devices through tissue engineering has been conducted to heal this type of wound. In this study, it was demonstrated that the combination of natural and synthetic polymers, such as poly (D-L lactide-co-glycolide) (PLGA) and gelatin (Ge), were useful for constructing scaffolds for wound healing. The aim of this study was to evaluate the influence of different PLGA/gelatin ratios (9:1, 7:3 and 5:5 (v/v)) on the physical, chemical and biological properties of electrospun scaffolds for wound dressings. These PLGA/Ge scaffolds had randomly oriented fibers with smooth surfaces and exhibited distances between fibers of less than 10 µm. The 7:3 and 5:5 PLGA/Ge scaffolds showed higher swelling, hydrophilicity and degradation rates than pure PLGA and 9:1 (v/v) PLGA/Ge scaffolds. Young's moduli of the scaffolds were 72 ± 10, 48 ± 6, 58 ± 6 and 6 ± 1 MPa for the pure PLGA scaffold and the 9:1, 7:3 and 5:5 (v/v) PLGA/Ge scaffolds, respectively. Mesenchymal stem cells (MSCs) seeded on all the PLGA/Ge scaffolds were viable, and the cells were attached to the fibers at the different analyzed timepoints. The most significant proliferation rate was observed for cells on the 7:3 PLGA/Ge scaffolds. Biocompatibility analysis showed that all the scaffolds produced inflammation at the first week postimplantation; however, the 7:3 and 5:5 (v/v) PLGA/Ge scaffolds were degraded completely, and there was no inflammatory reaction observed at the fourth week after implantation. In contrast, the 9:1 PLGA/Ge scaffolds persisted in the tissue for more than four weeks; however, at the eighth week, no traces of the scaffolds were found. In conclusion, the scaffolds with the 7:3 PLGA/Ge ratio showed suitable physical, chemical and biological properties for applications in chronic wound treatments.


Asunto(s)
Vendajes , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Materiales Biocompatibles , Proliferación Celular , Células Cultivadas , Elasticidad , Gelatina , Humanos , Inflamación , Masculino , Células Madre Mesenquimatosas/citología , Fenotipo , Ratas , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Termogravimetría , Humectabilidad , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...