Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2400145121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38833465

RESUMEN

Microalgae are promising production platforms for the cost-effective production of recombinant proteins. We have recently established that the red alga Porphyridium purpureum provides superior transgene expression properties, due to the episomal maintenance of transformation vectors as multicopy plasmids in the nucleus. Here, we have explored the potential of Porphyridium to synthesize complex pharmaceutical proteins to high levels. Testing expression constructs for a candidate subunit vaccine against the hepatitis C virus (HCV), we show that the soluble HCV E2 glycoprotein can be produced in transgenic algal cultures to high levels. The antigen undergoes faithful posttranslational modification by N-glycosylation and is recognized by conformationally selective antibodies, suggesting that it adopts a proper antigenic conformation in the endoplasmic reticulum of red algal cells. We also report the experimental determination of the structure of the N-glycan moiety that is attached to glycosylated proteins in Porphyridium. Finally, we demonstrate the immunogenicity of the HCV antigen produced in red algae when administered by injection as pure protein or by feeding of algal biomass.


Asunto(s)
Hepacivirus , Porphyridium , Porphyridium/metabolismo , Porphyridium/inmunología , Porphyridium/genética , Hepacivirus/inmunología , Hepacivirus/genética , Glicosilación , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Animales
2.
Vaccines (Basel) ; 11(10)2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37896924

RESUMEN

Influenza virus infections represent an ongoing public health threat as well as an economic burden. Although seasonal influenza vaccines have been available for some decades, efforts are being made to generate new efficient, flexible, and cost-effective technologies to be transferred into production. Our work describes the development of a model influenza hemagglutinin antigen that is capable of inducing protection against viral challenge in mice. High amounts of the H1 hemagglutinin ectodomain, HA18-528, were expressed in a bacterial system as insoluble inclusion bodies. Solubilization was followed by a thorough differential scanning fluorimetry (DSF)-guided optimization of refolding, which allows for fast and reliable screening of several refolding conditions, yielding tens of milligrams/L of folded protein. Structural and functional analysis revealed native-like folding as well as the presence of a mix of monomers and oligomers in solution. Mice immunized with HA18-528 were protected when exposed to influenza A virus as opposed to mice that received full-length denatured protein. Sera of mice immunized with HA18-528 showed both high titers of antigen-specific IgG1 and IgG2a isotypes as well as viral neutralization activity. These results prove the feasibility of the recombinant bacterial expression system coupled with DSF-guided refolding in providing influenza hemagglutinin for vaccine development.

3.
Adv Med Sci ; 68(1): 61-70, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36746060

RESUMEN

PURPOSE: Truncated human angiotensin-converting enzyme 2 (hACE2) expression rises a great scientific interest, considering its possible therapeutic and diagnostic applications. A promising research direction is the therapeutic use of smaller hACE2 versions with high binding affinity as decoy receptors for S1 glycoprotein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Another possible application is the use of these truncated versions for the functionalization of appropriate nanomaterials for constructing novel biosensors with a rapid and sensitive response for coronavirus disease 2019 (COVID-19) detection. The present study aimed to find a suitable system for high yield expression of different versions of truncated hACE2. MATERIALS AND METHODS: The encoding DNA for the hACE2 fragments (7-507 aa, 16-128 aa, and 30-357 aa) was obtained by PCR amplification using as template pcDNA3.1-hACE2 plasmid and further cloned into pET28a(+) and pET-SUMO vectors. The positive clones were selected and the correct DNA insertion was confirmed through gene sequencing. The truncated hACE2 proteins were further expressed in two E. coli strains, Rosetta(DE3) and BL21(DE3). RESULTS: For all three truncated hACE2 mini proteins, pET28a(+) does not lead to protein expression, regardless of the bacterial strain. The situation changes with the use of the pET-SUMO expression system when all hACE2 fragments are expressed, but with higher efficiency in E. coli BL21(DE3) than E. coli Rosetta. CONCLUSION: In the present study, we showed that different versions of recombinant hACE2 are successfully expressed in E. coli BL21(DE3) by using pET-SUMO expression system.


Asunto(s)
COVID-19 , Humanos , Escherichia coli/genética , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Plásmidos
4.
Plant Biotechnol J ; 21(6): 1176-1190, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36779605

RESUMEN

The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking ß-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with "humanized" N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of ß-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.


Asunto(s)
COVID-19 , Virus de la Hepatitis B , Humanos , Animales , Ratones , Virus de la Hepatitis B/genética , Glicosilación , Nicotiana/genética , Sistemas CRISPR-Cas/genética , COVID-19/genética , SARS-CoV-2 , Vacunas contra Hepatitis B/genética , Anticuerpos Neutralizantes , Antígenos de Superficie de la Hepatitis B/genética
5.
Front Immunol ; 13: 941243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935966

RESUMEN

Despite the availability of improved antiviral therapies, infection with Hepatitis B virus (HBV) remains a3 significant health issue, as a curable treatment is yet to be discovered. Current HBV vaccines relaying on the efficient expression of the small (S) envelope protein in yeast and the implementation of mass vaccination programs have clearly contributed to containment of the disease. However, the lack of an efficient immune response in up to 10% of vaccinated adults, the controversies regarding the seroprotection persistence in vaccine responders and the emergence of vaccine escape virus mutations urge for the development of better HBV immunogens. Due to the critical role played by the preS1 domain of the large (L) envelope protein in HBV infection and its ability to trigger virus neutralizing antibodies, including this protein in novel vaccine formulations has been considered a promising strategy to overcome the limitations of S only-based vaccines. In this work we aimed to combine relevant L and S epitopes in chimeric antigens, by inserting preS1 sequences within the external antigenic loop of S, followed by production in mammalian cells and detailed analysis of their antigenic and immunogenic properties. Of the newly designed antigens, the S/preS116-42 protein assembled in subviral particles (SVP) showed the highest expression and secretion levels, therefore, it was selected for further studies in vivo. Analysis of the immune response induced in mice vaccinated with S/preS116-42- and S-SVPs, respectively, demonstrated enhanced immunogenicity of the former and its ability to activate both humoral and cellular immune responses. This combined activation resulted in production of neutralizing antibodies against both wild-type and vaccine-escape HBV variants. Our results validate the design of chimeric HBV antigens and promote the novel S/preS1 protein as a potential vaccine candidate for administration in poor-responders to current HBV vaccines.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Animales , Anticuerpos Bloqueadores , Anticuerpos Neutralizantes , Vacunas contra Hepatitis B , Inmunidad Humoral , Mamíferos , Ratones , Ratones Endogámicos BALB C , Vacunas Sintéticas
6.
Plant Biotechnol J ; 19(10): 2027-2039, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34002936

RESUMEN

Chronic infection with hepatitis C virus (HCV) remains a leading cause of liver-related pathologies and a global health problem, currently affecting more than 71 million people worldwide. The development of a prophylactic vaccine is much needed to complement the effective antiviral treatment available and achieve HCV eradication. Current strategies focus on increasing the immunogenicity of the HCV envelope glycoprotein E2, the major target of virus-neutralizing antibodies, by testing various expression systems or manipulating the protein conformation and the N-glycosylation pattern. Here we report the first evidence of successful production of the full-length HCV E2 glycoprotein in Nicotiana benthamiana, by using the Agrobacterium-mediated transient expression technology. Molecular and functional analysis showed that the viral protein was correctly processed in plant cells and achieved the native folding required for binding to CD81, one of the HCV receptors. N-glycan analysis of HCV-E2 produced in N. benthamiana and mammalian cells indicated host-specific trimming of mannose residues and possibly, protein trafficking. Notably, the plant-derived viral antigen triggered a significant immune response in vaccinated mice, characterized by the presence of antibodies with HCV-neutralizing activity. Together, our study demonstrates that N. benthamiana is a viable alternative to costly mammalian cell cultures for the expression of complex viral antigens and supports the use of plants as cost-effective production platforms for the development of HCV vaccines.


Asunto(s)
Hepacivirus , Vacunas contra Hepatitis Viral , Animales , Anticuerpos Neutralizantes , Anticuerpos contra la Hepatitis C , Ratones , Nicotiana , Proteínas del Envoltorio Viral/genética
7.
Vaccine ; 36(38): 5789-5795, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30082163

RESUMEN

Hepatitis B Virus (HBV) infection can be prevented by vaccination. Vaccines containing the small (S) envelope protein are currently used in universal vaccination programs and achieve protective immune response in more than 90% of recipients. However, new vaccination strategies are necessary for successful immunization of the remaining non- or low-responders. We have previously characterized a novel HBV chimeric antigen, which combines neutralization epitopes of the S and the preS1 domain of the large (L) envelope protein (genotype D). The S/preS121-47 chimera produced in mammalian cells and Nicotiana benthamiana plants, induced a significantly stronger immune response in parenterally vaccinated mice than the S protein. Here we describe the transient expression of the S/preS121-47 antigen in an edible plant, Lactuca sativa, for potential development of an oral HBV vaccine. Our study shows that oral administration of adjuvant-free Lactuca sativa expressing the S/preS121-47 antigen, three times, at 1 µg/dose, was sufficient to trigger a humoral immune response in mice. Importantly, the elicited antibodies were able to neutralize HBV infection in an NTCP-expressing infection system (HepG2-NTCP cell line) more efficiently than those induced by mice fed on Lactuca sativa expressing the S protein. These results support the S/preS121-47 antigen as a promising candidate for future development as an edible HBV vaccine.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos de Superficie de la Hepatitis B/inmunología , Vacunas contra Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Hepatitis B/prevención & control , Precursores de Proteínas/inmunología , Administración Oral , Animales , Línea Celular Tumoral , Femenino , Células Hep G2 , Vacunas contra Hepatitis B/administración & dosificación , Humanos , Lactuca/genética , Lactuca/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/inmunología , Vacunación , Proteínas del Envoltorio Viral/inmunología
8.
Antiviral Res ; 144: 256-265, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28666757

RESUMEN

Chronic Hepatitis B Virus (HBV) infection leads to severe liver pathogenesis associated with significant morbidity and mortality. As no curable medication is yet available, vaccination remains the most cost-effective approach to limit HBV spreading and control the infection. Although safe and efficient, the standard vaccine based on production of the small (S) envelope protein in yeast fails to elicit an effective immune response in about 10% of vaccinated individuals, which are at risk of infection. One strategy to address this issue is the development of more immunogenic antigens. Here we describe a novel HBV antigen obtained by combining relevant immunogenic determinants of S and large (L) envelope proteins. Our approach was based on the insertion of residues 21-47 of the preS1 domain of the L protein (nomenclature according to genotype D), involved in virus attachment to hepatocytes, within the external antigenic loop of S. The resulting S/preS121-47 chimera was successfully produced in HEK293T and Nicotiana benthamiana plants, as a more economical recombinant protein production platform. Comparative biochemical, functional and electron microscopy analysis indicated assembly of the novel antigen into subviral particles in mammalian and plant cells. Importantly, these particles preserve both S- and preS1-specific epitopes and elicit significantly stronger humoral and cellular immune responses than the S protein, in both expression systems used. Our data promote this antigen as a promising vaccine candidate to overcome poor responsiveness to the conventional, S protein-based, HBV vaccine.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/inmunología , Vacunas contra Hepatitis B/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Línea Celular , Anticuerpos contra la Hepatitis B/sangre , Antígenos de Superficie de la Hepatitis B/genética , Vacunas contra Hepatitis B/administración & dosificación , Vacunas contra Hepatitis B/genética , Vacunas contra Hepatitis B/aislamiento & purificación , Humanos , Interferón gamma/metabolismo , Leucocitos Mononucleares/inmunología , Ratones Endogámicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Bazo/inmunología , Nicotiana , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/aislamiento & purificación , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/aislamiento & purificación
9.
Plant Biotechnol J ; 15(12): 1611-1621, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28419665

RESUMEN

The hepatitis C virus (HCV) is a major etiologic agent for severe liver diseases (e.g. cirrhosis, fibrosis and hepatocellular carcinoma). Approximately 140 million people have chronic HCV infections and about 500 000 die yearly from HCV-related liver pathologies. To date, there is no licensed vaccine available to prevent HCV infection and production of a HCV vaccine remains a major challenge. Here, we report the successful production of the HCV E1E2 heterodimer, an important vaccine candidate, in an edible crop (lettuce, Lactuca sativa) using Agrobacterium-mediated transient expression technology. The wild-type dimer (E1E2) and a variant without an N-glycosylation site in the E2 polypeptide (E1E2∆N6) were expressed, and appropriate N-glycosylation pattern and functionality of the E1E2 dimers were demonstrated. The humoral immune response induced by the HCV proteins was investigated in mice following oral administration of lettuce antigens with or without previous intramuscular prime with the mammalian HEK293T cell-expressed HCV dimer. Immunization by oral feeding only resulted in development of weak serum levels of anti-HCV IgM for both antigens; however, the E1E2∆N6 proteins produced higher amounts of secretory IgA, suggesting improved immunogenic properties of the N-glycosylation mutant. The mice group receiving the intramuscular injection followed by two oral boosts with the lettuce E1E2 dimer developed a systemic but also a mucosal immune response, as demonstrated by the presence of anti-HCV secretory IgA in faeces extracts. In summary, our study demonstrates the feasibility of producing complex viral antigens in lettuce, using plant transient expression technology, with great potential for future low-cost oral vaccine development.


Asunto(s)
Lactuca/genética , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/administración & dosificación , Vacunas contra Hepatitis Viral/inmunología , Administración Oral , Animales , Femenino , Células HEK293 , Humanos , Inmunidad Humoral , Ratones Endogámicos BALB C , Plantas Modificadas Genéticamente , Ingeniería de Proteínas/métodos , Multimerización de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas del Envoltorio Viral/genética , Vacunas contra Hepatitis Viral/genética
10.
PLoS One ; 11(3): e0150700, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26959983

RESUMEN

The aim of this study was to evaluate the impact of different inactivation and splitting procedures on influenza vaccine product composition, stability and recovery to support transfer of process technology. Four split and two whole inactivated virus (WIV) influenza vaccine bulks were produced and compared with respect to release criteria, stability of the bulk and haemagglutinin recovery. One clarified harvest of influenza H3N2 A/Uruguay virus prepared on 25.000 fertilized eggs was divided equally over six downstream processes. The main unit operation for purification was sucrose gradient zonal ultracentrifugation. The inactivation of the virus was performed with either formaldehyde in phosphate buffer or with beta-propiolactone in citrate buffer. For splitting of the viral products in presence of Tween®, either Triton™ X-100 or di-ethyl-ether was used. Removal of ether was established by centrifugation and evaporation, whereas removal of Triton-X100 was performed by hydrophobic interaction chromatography. All products were sterile filtered and subjected to a 5 months real time stability study. In all processes, major product losses were measured after sterile filtration; with larger losses for split virus than for WIV. The beta-propiolactone inactivation on average resulted in higher recoveries compared to processes using formaldehyde inactivation. Especially ether split formaldehyde product showed low recovery and least stability over a period of five months.


Asunto(s)
Vacunas contra la Influenza/biosíntesis , Vacunas de Productos Inactivados/biosíntesis , Dispersión Dinámica de Luz , Electroforesis en Gel de Poliacrilamida , Filtración , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Espectrometría de Masas , Virión/ultraestructura
11.
Hum Vaccin Immunother ; 12(4): 1009-26, 2016 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-26618392

RESUMEN

Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness.


Asunto(s)
Adyuvantes Inmunológicos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza , Transferencia de Tecnología , Evaluación Preclínica de Medicamentos , Emulsiones/química , Humanos , Subtipo H5N1 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Aceites , Pandemias/prevención & control , Rumanía , Virión/fisiología , Inactivación de Virus
12.
Roum Arch Microbiol Immunol ; 72(1): 63-86, 2013.
Artículo en Inglés, Rumano | MEDLINE | ID: mdl-23947014

RESUMEN

Cyclic AMP (cAMP), one of the most important secondary messengers, is produced by adenylate cyclase (AC) from adenosine triphosphate (ATP). AC is a widespread enzyme, being present both in prokaryotes and eukaryotes. Although they have the same enzymatic activity (ATP cyclization), the structure of these proteins varies, depending on their function and the producing organism. Some pathogenic bacteria utilize these enzymes as toxins which interact with calmodulin (or another eukaryote activator), causing intense cAMP synthesis and disruption of infected cell functions. In contrast, other pathogenic bacteria benefit of augmentation of AC activity for their own function. Based on sequence analysis ofAC catalytic domain from two pathogenic bacteria (Bacillus anthracis and Bordetellapertussis) with known three-dimensional structures, a possible secondary structure for 1-255 amino acid fragment from Pseudomonas aeruginosa AC (with 80TKGFSVKGKSS90 as the ATP binding site) is proposed.


Asunto(s)
Adenilil Ciclasas/metabolismo , Carbunco/microbiología , Bacillus anthracis/enzimología , Bacillus anthracis/patogenicidad , Proteínas Bacterianas/metabolismo , Bordetella pertussis/enzimología , Bordetella pertussis/patogenicidad , Tos Ferina/microbiología , Adenilil Ciclasas/química , Adenilil Ciclasas/genética , Animales , Bacillus anthracis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bordetella pertussis/genética , Humanos
13.
Vaccine ; 31(12): 1633-40, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23103197

RESUMEN

Many developing countries lack or have inadequate pandemic influenza vaccine manufacturing capacity. In the 2009 H1N1 pandemic, this led to delayed and inadequate vaccine coverage in the developing world. Thus, bolstering developing country influenza vaccine manufacturing capacity is urgently needed. The Cantacuzino Institute in Bucharest, Romania has been producing seasonal influenza vaccine since the 1970s, and has the capacity to produce ∼5 million doses of monovalent vaccine in the event of an influenza pandemic. Inclusion of an adjuvant in the vaccine could enable antigen dose sparing, expanding vaccine coverage and potentially allowing universal vaccination of the Romanian population and possibly neighboring countries. However, adjuvant formulation and manufacturing know-how are difficult to access. This manuscript describes the successful transfer of oil-in-water emulsion adjuvant manufacturing and quality control technologies from the Infectious Disease Research Institute in Seattle, USA to the Cantacuzino Institute. By describing the challenges and accomplishments of the project, it is hoped that the knowledge and experience gained will benefit other institutes involved in similar technology transfer projects designed to facilitate increased vaccine manufacturing capacity in developing countries.


Asunto(s)
Adyuvantes Inmunológicos/normas , Vacunas contra la Influenza/normas , Transferencia de Tecnología , Tecnología Farmacéutica/normas , Adyuvantes Inmunológicos/farmacología , Países en Desarrollo , Emulsiones/farmacología , Emulsiones/normas , Regulación y Control de Instalaciones , Vacunas contra la Influenza/farmacología , Cooperación Internacional , Control de Calidad , Rumanía , Tecnología Farmacéutica/métodos
14.
Roum Arch Microbiol Immunol ; 70(2): 78-84, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22106514

RESUMEN

The ability of H5N1 Avian Influenza Virus (AIV) to survive in surface water has been assessed in experimental laboratory conditions, based on non-pathogenic avian reassortant model, by titration of infectivity (TCID50) at different time intervals, in three different types of water. The effect of different chemicals on AIV's survival was assessed using the same type of experimental model. After exposure to the chemical, followed by growth on a suitable substrate, the AIV was quantified by a real-time quantitative reverse transcriptase PCR (qRT-PCR). The reassortant virus persisted, and remained infective in aquatic environments, for 12 days at 22-35 degrees C and up to 20 days at 4 degrees C, irrespective of the type of water, supporting the hypothesis of a potential risk for transmitting the virus among birds and contaminating the household water via common sources of water. A significant decrease for AIV persistence models was recorded for sea water, after 12 days, at 35 degrees C. An effective inactivation has been shown when using commercially available products based on glutaraldehyde and penta potassium bis (peroxy mono sulphate) bis(sulphate), respectively. This rapid and safe method for decontamination, developed in this study, might be helpful in implementation of biosafety measures in laboratory and farms against AIV.


Asunto(s)
Desinfectantes/farmacología , Agua Dulce/virología , Subtipo H5N1 del Virus de la Influenza A/fisiología , Agua de Mar/virología , Inactivación de Virus , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Inactivación de Virus/efectos de los fármacos
15.
Roum Arch Microbiol Immunol ; 68(2): 80-2, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20361525

RESUMEN

Serotherapy still remains a way of treatment in some diseases, and it could be consider superior to any other mode of action because the protecting substances of the body are the products of the organism itself. The aim of the study was to establish an "in vivo" method for testing the efficacy of therapeutic serum. Hyperimmune serum for influenza A/PR8/34 viral strain, was prepared in sheep, and tested for inhibition of haemagglutination and microneutralisation. Seroprotection was evaluated in mice one day after being challenged with a lethal dose of the same virus. Our study shows that protection occurred in all mice treated with undiluted hyperimmune serum one day post infection (no clinical signs, faster recovery of the body weight after the first three days of the infection, all mice survived).


Asunto(s)
Inmunización Pasiva/métodos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/terapia , Animales , Peso Corporal/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología
16.
J Biol Chem ; 282(10): 7242-53, 2007 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-17210578

RESUMEN

In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.


Asunto(s)
Bacterias Gramnegativas/enzimología , Bacterias Grampositivas/enzimología , Nucleósido-Fosfato Quinasa/metabolismo , Adenosina Trifosfato/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Activación Enzimática , Guanosina Trifosfato/farmacología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nucleósido-Fosfato Quinasa/antagonistas & inhibidores , Nucleósido-Fosfato Quinasa/química , Uridina Monofosfato/farmacología , Uridina Trifosfato/farmacología
17.
J Autoimmun ; 20(4): 323-31, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12791318

RESUMEN

Matrix metalloproteinase-9 (MMP-9) was involved in inflammation and immune system dysfunctions. Besides immunologic abnormalities, systemic lupus erythematosus (SLE) also presents chronic inflammatory components. Therefore, a role of MMP-9 in SLE pathology might be supposed. To verify this hypothesis, SLE patients and healthy donors were compared for the MMP-9 and MMP-9 mRNA levels in peripheral blood mononuclear cells (PBMCs), the spontaneous secretion of MMP-9 and TIMP-1 and the MMP-9 activity. Thus, we found that fresh PBMCs from SLE patients expressed a significantly higher activity of MMP-9 and spontaneously released higher levels of MMP-9, as compared to healthy donors, while the secreted TIMP-1 level was the same for both groups. When the patients were sub-grouped based on disease status, the most increased pro-MMP-9 activity inside the PBMCs was identified for relapse SLE sub-group. A similar observation for SLE patients with positive serum fibrinogen was found. Following culture, the PBMCs from remission SLE patients secreted significantly higher MMP-9 level, than the PBMCs from relapse SLE patients. PBMCs from relapse SLE patients secreted the highest levels of TIMP-1, although this difference was not statistically significant. Taken together, these observations suggested the multiple roles of MMP-9 and TIMP-1 in progress of inflammation and tissue damage and/or in repair, depending on clinical stages of SLE.


Asunto(s)
Lupus Eritematoso Sistémico/sangre , Metaloproteinasa 9 de la Matriz/sangre , Inhibidor Tisular de Metaloproteinasa-1/sangre , Autoinmunidad , Secuencia de Bases , Estudios de Casos y Controles , Femenino , Humanos , Mediadores de Inflamación/sangre , Leucocitos Mononucleares/metabolismo , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Metaloproteinasa 9 de la Matriz/genética , Persona de Mediana Edad , ARN Mensajero/sangre , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...