Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(4): 1024-1027, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791001

RESUMEN

We report on the design, fabrication, and experimental characterization of photonic crystal (PhC) nanobeam cavities with the smallest footprint, largest intrinsic quality factor, and smallest mode volume to be demonstrated to date in a monolithic CMOS platform. Two types of cavities were designed, with opposite spatial mode symmetries. The opposite mode symmetry, combined with evanescent coupling, allows the nanobeam cavities to be used in reflectionless topologies, desirable in complex photonic integrated circuits (PICs). The devices were implemented and fabricated in a 45 nm monolithic electronics-photonics CMOS platform optimized for silicon photonics (GlobalFoundries 45CLO) and do not require any post-processing. Quality factors exceeding 100 000 were measured for both devices, the highest, to the best of our knowledge, among fully cladded PhC nanobeam cavities in any silicon-on-insulator (SOI) platform. Additionally, the ability of the cavities to confine light into small mode volumes, of the order of (λ/n)3, was confirmed experimentally using near-field scanning optical microscopy (NSOM). These types of cavities are an important step toward realizing ultra-low energy active devices required for the next generation of integrated optical links beyond the current microring resonator-based links and other CMOS PICs.

2.
Opt Express ; 30(14): 24589-24601, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237010

RESUMEN

Optical phased arrays (OPAs) which beam-steer in two dimensions (2D) are currently limited to grating row spacings well above a half wavelength. This gives rise to grating lobes along one axis which limit the field of view (FOV), introduce return signal ambiguity, and reduce the optical efficiency in lidar applications. We demonstrate a Vernier transceiver scheme which uses paired transmit and receive phased arrays with different row periodicities, leading to mismatched grating lobe angular spacings and only a single aligned pair of transmit and receive lobes. This permits a return signal from a target in the desired lobe to be efficiently coupled back into the receive OPA while back-scatter from the other grating lobes is rejected, removing the ambiguity. Our proposal goes beyond previously considered Vernier schemes in other domains like RF and sound, to enable a dynamic Vernier where all beam directions are simultaneously Vernier aligned, and allow ultra-fast scanning, or multi-beam, operation with Vernier lobe suppression. We analyze two variants of grating lobe suppressing beam-steering configurations, one of which eliminates the FOV limitation, and find the conditions for optimal lobe suppression. We present the first, to the best of our knowledge, experimental demonstration of an OPA Vernier transceiver, including grating lobe suppression of 6.4 dB and beam steering across 5.5°. The demonstration is based on a pair of 2D-wavelength-steered serpentine OPAs. These results address the pervasive issue of grating lobes in integrated photonic lidar schemes, opening the way to larger FOVs and reduced complexity 2D beam-steering designs.

3.
Opt Lett ; 47(13): 3167-3170, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776591

RESUMEN

Grating coupler devices provide efficient, foundry-compatible vertical fiber-to-chip coupling solutions in integrated photonic platforms. However, standard grating coupler designs are highly polarization sensitive, which hinders their adoption. We present a new, to the best of our knowledge, type of 1D polarization-insensitive grating coupler (PIGC) that is based on a zero-birefringence subwavelength "corelet" waveguide. We demonstrate a PIGC for coupling in the telecommunications O-band in a 45-nm-node monolithic silicon-on-insulator (SOI) CMOS electronic-photonic platform, with measured insertion losses of 6.7 and 6.1 dB to transverse electric and transverse magnetic polarizations, respectively, and a ±1-dB polarization dependent loss bandwidth of 73 nm.

4.
Opt Lett ; 46(3): 460-463, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33528384

RESUMEN

Optical isolators, while commonplace in bulk and fiber optical systems, remain a key missing component in integrated photonics. Isolation using magneto-optic materials has been difficult to integrate into complementary metal-oxide-semiconductor (CMOS) fabrication platforms, motivating the use of other paths to effective non-reciprocity such as temporal modulation. We demonstrate a non-reciprocal element comprising a pair of microring modulators and a microring phase shifter in an active silicon photonic process, which, in combination with standard bandpass filters, yields an isolator on-chip. Isolation up to 13 dB is measured with a 3 dB bandwidth of 2 GHz and insertion loss of 18 dB. We also show transmission of a 4 Gbps optical data signal through the isolator while retaining a wide-open eye diagram. This compact design, in combination with increased modulation efficiency, could enable modulator-based isolators to become a standard 'black-box' component in integrated photonics CMOS foundry platform component libraries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...