Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39345609

RESUMEN

Microglia, the brain's resident macrophages, can be reconstituted by surrogate cells - a process termed "microglia replacement." To expand the microglia replacement toolkit, we here introduce estrogen-regulated (ER) homeobox B8 (Hoxb8) conditionally immortalized macrophages, a cell model for generation of immune cells from murine bone marrow, as a versatile model for microglia replacement. We find that ER-Hoxb8 macrophages are highly comparable to primary bone marrow-derived (BMD) macrophages in vitro, and, when transplanted into a microglia-free brain, engraft the parenchyma and differentiate into microglia-like cells. Furthermore, ER-Hoxb8 progenitors are readily transducible by virus and easily stored as stable, genetically manipulated cell lines. As a demonstration of this system's power for studying the effects of disease mutations on microglia in vivo, we created stable, Adar1-mutated ER-Hoxb8 lines using CRISPR-Cas9 to study the intrinsic contribution of macrophages to Aicardi-Goutières Syndrome (AGS), an inherited interferonopathy that primarily affects the brain and immune system. We find that Adar1 knockout elicited interferon secretion and impaired macrophage production in vitro, while preventing brain macrophage engraftment in vivo - phenotypes that can be rescued with concurrent mutation of Ifih1 (MDA5) in vitro, but not in vivo. Lastly, we extended these findings by generating ER-Hoxb8 progenitors from mice harboring a patient-specific Adar1 mutation (D1113H). We demonstrated the ability of microglia-specific D1113H mutation to drive interferon production in vivo, suggesting microglia drive AGS neuropathology. In sum, we introduce the ER-Hoxb8 approach to model microglia replacement and use it to clarify macrophage contributions to AGS.

2.
Elife ; 102021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34779402

RESUMEN

The Par complex dynamically polarizes to the apical cortex of asymmetrically dividing Drosophila neuroblasts where it directs fate determinant segregation. Previously, we showed that apically directed cortical movements that polarize the Par complex require F-actin (Oon and Prehoda, 2019). Here, we report the discovery of cortical actomyosin dynamics that begin in interphase when the Par complex is cytoplasmic but ultimately become tightly coupled to cortical Par dynamics. Interphase cortical actomyosin dynamics are unoriented and pulsatile but rapidly become sustained and apically-directed in early mitosis when the Par protein aPKC accumulates on the cortex. Apical actomyosin flows drive the coalescence of aPKC into an apical cap that depolarizes in anaphase when the flow reverses direction. Together with the previously characterized role of anaphase flows in specifying daughter cell size asymmetry, our results indicate that multiple phases of cortical actomyosin dynamics regulate asymmetric cell division.


Asunto(s)
Actinas/metabolismo , Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Animales , Polaridad Celular/fisiología , Citoplasma , Drosophila melanogaster , Péptidos y Proteínas de Señalización Intracelular , Larva , Mitosis , Neuronas/fisiología , Proteína Quinasa C
3.
Nat Cell Biol ; 21(6): 721-730, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110287

RESUMEN

Wnt signalling drives many processes in development, homeostasis and disease; however, the role and mechanism of individual ligand-receptor (Wnt-Frizzled (Fzd)) interactions in specific biological processes remain poorly understood. Wnt9a is specifically required for the amplification of blood progenitor cells during development. Using genetic studies in zebrafish and human embryonic stem cells, paired with in vitro cell biology and biochemistry, we determined that Wnt9a signals specifically through Fzd9b to elicit ß-catenin-dependent Wnt signalling that regulates haematopoietic stem and progenitor cell emergence. We demonstrate that the epidermal growth factor receptor (EGFR) is required as a cofactor for Wnt9a-Fzd9b signalling. EGFR-mediated phosphorylation of one tyrosine residue on the Fzd9b intracellular tail in response to Wnt9a promotes internalization of the Wnt9a-Fzd9b-LRP signalosome and subsequent signal transduction. These findings provide mechanistic insights for specific Wnt-Fzd signals, which will be crucial for specific therapeutic targeting and regenerative medicine.


Asunto(s)
Células Madre Hematopoyéticas/citología , Receptores de Neurotransmisores/genética , Proteínas Wnt/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Receptores ErbB/genética , Humanos , Fosforilación , Vía de Señalización Wnt , Pez Cebra/crecimiento & desarrollo , beta Catenina/genética
4.
Elife ; 82019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31066675

RESUMEN

During the asymmetric divisions of Drosophila neuroblasts, the Par polarity complex cycles between the cytoplasm and an apical cortical domain that restricts differentiation factors to the basal cortex. We used rapid imaging of the full cell volume to uncover the dynamic steps that underlie transitions between neuroblast polarity states. Initially, the Par proteins aPKC and Bazooka form discrete foci at the apical cortex. Foci grow into patches that together comprise a discontinuous, unorganized structure. Coordinated cortical flows that begin near metaphase and are dependent on the actin cytoskeleton rapidly transform the patches into a highly organized apical cap. At anaphase onset, the cap disassembles as the cortical flow reverses direction toward the emerging cleavage furrow. Following division, cortical patches dissipate into the cytoplasm allowing the neuroblast polarity cycle to begin again. Our work demonstrates how neuroblasts use asymmetric recruitment and cortical flows to dynamically polarize during asymmetric division cycles.


Asunto(s)
Actinas/metabolismo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/fisiología , Proteína Quinasa C/metabolismo , Animales , Citoplasma/metabolismo , Drosophila , Movimiento (Física)
5.
Zebrafish ; 14(4): 383-386, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27829120

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has been applied to edit genomes in a wide variety of model systems. Although this process can be quite efficient, editing at precise locations in the genome remains difficult without a suitable single guide RNA (sgRNA). We have developed a method for screening sgRNA function in vitro, using reagents that most zebrafish laboratories are already using. The results from our in vitro assay correlate with function in vivo in every sgRNA that we have examined so far. When combined with endonucleases with alternative protospacer adjacent motif site specificities and alternative sgRNAs, this method will streamline genome editing at almost any locus.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , ARN Guía de Kinetoplastida/genética , Pez Cebra/genética , Animales , Endonucleasas/metabolismo , Marcación de Gen , Técnicas In Vitro , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA