Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606803

RESUMEN

The low-temperature modification of ß-Ag2Se has proven to be useful as a near-room-temperature thermoelectric material. Over the past years, research has been devoted to interstitial, vacancy, and substitutional doping into the parent ß-Ag2Se structure, aiming at tuning the material's charge and heat transport properties to enhance thermoelectric performance. The transformation of ß-Ag2Se into α-Ag2Se at ∼134 °C and the low solubility of dopants are the main obstacles for the doping approach. Herein, we report a facile, safe, scalable, and cost-effective benchtop approach to successfully produce metal-doped ß-Ag2Se. The doped materials display a remarkable enhancement of thermoelectric performance with a record-high peak zT of 1.30 at 120 °C and an average zT of ∼1.15 in the 25-120 °C range for 0.2 at. % Zn-doped Ag2Se. The enhancement in zT is attributed to point defects created by Zn doping into Ag vacancies/interstitials, which enhances the scattering of phonons and tunes the charge carrier properties, leading to the significant suppression of thermal conductivity. The simplicity of the synthetic method developed herein and the high performance of the final products provide an avenue to produce high-quality Ag2Se-based thermoelectric materials.

2.
Chem Sci ; 14(43): 12331-12338, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969605

RESUMEN

Chalcohalides are desirable semiconducting materials due to their enhanced light-absorbing efficiency and stability compared to lead halide perovskites. However, unlike perovskites, tuning the optical properties of chalcohalides by mixing different halide ions into their structure remains to be explored. Here, we present an effective strategy for halide-alloying Pb3SBrxI4-x (1 ≤ x ≤ 3) using a solution-phase approach and study the effect of halide-mixing on structural and optical properties. We employ a combination of X-ray diffraction, electron microscopy, and solid-state NMR spectroscopy to probe the chemical structure of the chalcohalides and determine mixed-halide incorporation. The absorption onsets of the chalcohalides blue-shift to higher energies as bromide replaces iodide within the structure. The photoluminescence maxima of these materials mimics this trend at both the ensemble and single particle fluorescence levels, as observed by solution-phase and single particle fluorescence microscopy, respectively. These materials exhibit superior stability against moisture compared to traditional lead halide perovskites, and IR spectroscopy reveals that the chalcohalide surfaces are terminated by both amine and carboxylate ligands. Electronic structure calculations support the experimental band gap widening and volume reduction with increased bromide incorporation, and provide useful insight into the likely atomic coloring patterns of the different mixed-halide compositions. Ultimately, this study expands the range of tunability that is achievable with chalcohalides, which we anticipate will improve the suitability of these semiconducting materials for light absorbing and emission applications.

3.
J Am Chem Soc ; 145(41): 22762-22775, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37813388

RESUMEN

The inertness of elemental selenium is a significant obstacle in the synthesis of selenium-containing materials at low reaction temperatures. Over the years, several recipes have been developed to overcome this hurdle; however, most of the methods are associated with the use of highly toxic, expensive, and environmentally harmful reagents. As such, there is an increasing demand for the design of cheap, stable, and nontoxic reactive selenium precursors usable in the low-temperature synthesis of transition metal selenides with vast applications in nanotechnology, thermoelectrics, and superconductors. Herein, a novel synthetic route has been developed for activating elemental selenium by using a solvothermal approach. By comprehensive 77Se NMR, Raman, and infrared spectroscopies and gas chromatography-mass spectrometry, we show that the activated Se solution contained HSe-, [Se-Se]2-, and Se2- ions, as well as dialkyl selenide (R2Se) and dialkyl diselenide (R-Se-Se-R) species in dynamic equilibrium. This also corresponded to the first observation of naked Se22- in solution. The versatility of the developed Se precursor was demonstrated by the successful synthesis of (i) the polycrystalline room-temperature modification of the ß-Ag2Se thermoelectric material; (ii) large single crystals of superconducting ß-FeSe; (iii) CdSe nanocrystals with different particle sizes (3-10 nm); (iv) nanosheets of PtSe2; and (v) mono- and dibenzyl selenides and diselenides at room temperature. The simplicity and diversity of the developed Se activation method holds promise for applied and fundamental research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...