Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831638

RESUMEN

The foundation of most food production systems underpinning global food security is the careful management of soil resources. Embedded in the concept of soil health is the impact of diverse soil-borne pests and pathogens, and phytoparasitic nematodes represent a particular challenge. Root-knot nematodes and cyst nematodes are severe threats to agriculture, accounting for annual yield losses of US$157 billion. The control of soil-borne phytoparasitic nematodes conventionally relies on the use of chemical nematicides, which can have adverse effects on the environment and human health due to their persistence in soil, plants, and water. Nematode-resistant plants offer a promising alternative, but genetic resistance is species-dependent, limited to a few crops, and breeding and deploying resistant cultivars often takes years. Novel approaches for the control of phytoparasitic nematodes are therefore required, those that specifically target these parasites in the ground whilst minimizing the impact on the environment, agricultural ecosystems, and human health. In addition to the development of next-generation, environmentally safer nematicides, promising biochemical strategies include the combination of RNA interference (RNAi) with nanomaterials that ensure the targeted delivery and controlled release of double-stranded RNA. Genome sequencing has identified more than 75 genes in root knot and cyst nematodes that have been targeted with RNAi so far. But despite encouraging results, the delivery of dsRNA to nematodes in the soil remains inefficient. In this review article, we describe the state-of-the-art RNAi approaches targeting phytoparasitic nematodes and consider the potential benefits of nanotechnology to improve dsRNA delivery.

2.
Plant Biotechnol J ; 21(6): 1254-1269, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36811226

RESUMEN

Immune checkpoint inhibitors (ICIs) have achieved huge clinical success. However, many still have limited response rates, and are prohibitively costly. There is a need for effective and affordable ICIs, as well as local manufacturing capacity to improve accessibility, especially to low-to-middle income countries (LMICs). Here, we have successfully expressed three key ICIs (anti-PD-1 Nivolumab, anti-NKG2A Monalizumab, and anti-LAG-3 Relatimab) transiently in Nicotiana benthamiana and Nicotiana tabacum plants. The ICIs were expressed with a combination of different Fc regions and glycosylation profiles. They were characterized in terms of protein accumulation levels, target cell binding, binding to human neonatal Fc receptors (hFcRn), human complement component C1q (hC1q) and various Fcγ receptors, as well as protein recovery during purification at 100 mg- and kg-scale. It was found that all ICIs bound to the expected target cells. Furthermore, the recovery during purification, as well as Fcγ receptor binding, can be altered depending on the Fc region used and the glycosylation profiles. This opens the possibility of using these two parameters to fine-tune the ICIs for desired effector functions. A scenario-based production cost model was also generated based on two production scenarios in hypothetical high- and low-income countries. We have shown that the product accumulation and recovery of plant production platforms were as competitive as mammalian cell-based platforms. This highlights the potential of plants to deliver ICIs that are more affordable and accessible to a widespread market, including LMICs.


Asunto(s)
Neoplasias , Nicotiana , Animales , Humanos , Nicotiana/genética , Inhibidores de Puntos de Control Inmunológico , Receptores de IgG , Mamíferos
3.
Biotechnol Bioeng ; 120(4): 1038-1054, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36539373

RESUMEN

Nanoparticles are used as carriers for the delivery of drugs and imaging agents. Proteins are safer than synthetic nanocarriers due to their greater biocompatibility and the absence of toxic degradation products. In this context, ferritin has the additional benefit of inherently targeting the membrane receptor transferrin 1, which is overexpressed by most cancer cells. Furthermore, this self-assembling multimeric protein can be loaded with more than 2000 iron atoms, as well as drugs, contrast agents, and other cargos. However, recombinant ferritin currently costs ~3.5 million € g-1 , presumably because the limited number of producers cannot meet demand, making it generally unaffordable as a nanocarrier. Because plants can produce proteins at very-large-scale, we developed a simple, proof-of-concept process for the production of the human ferritin heavy chain by transient expression in Nicotiana benthamiana. We optimized the protein yields by screening different compartments and 5'-untranslated regions in PCPs, and selected the best-performing construct for production in differentiated plants. We then established a rapid and scalable purification protocol by combining pH and heat treatment before extraction, followed by an ultrafiltration/diafiltration size-based separation process. The optimized process achieved ferritin levels of ~40 mg kg-1 fresh biomass although depth filtration limited product recovery to ~7%. The purity of the recombinant product was >90% at costs ~3% of the current sales price. Our method therefore allows the production of affordable ferritin heavy chain as a carrier for therapeutic and diagnostic agents, which is suitable for further stability and functionality testing in vitro and in vivo.


Asunto(s)
Apoferritinas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Ferritinas/genética , Hierro , Sistemas de Liberación de Medicamentos
4.
Plant Biotechnol J ; 20(10): 1928-1939, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35702941

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy can be used to determine the structure, dynamics and interactions of proteins. However, protein NMR requires stable isotope labelling for signal detection. The cells used for the production of recombinant proteins must therefore be grown in medium containing isotopically labelled substrates. Stable isotope labelling is well established in Escherichia coli, but bacteria are only suitable for the production of simple proteins without post-translational modifications. More complex proteins require eukaryotic production hosts, but their growth can be impaired by labelled media, thus reducing product yields and increasing costs. To address this limitation, we used media supplemented with isotope-labelled substrates to cultivate the tobacco-derived cell line BY-2, which was then cast into plant cell packs (PCPs) for the transient expression of a labelled version of the model protein GB1. Mass spectrometry confirmed the feasibility of isotope labelling with 15 N and 2 H using this approach. The resulting NMR spectrum featured a signal dispersion comparable to recombinant GB1 produced in E. coli. PCPs therefore offer a rapid and cost-efficient alternative for the production of isotope-labelled proteins for NMR analysis, especially suitable for complex proteins that cannot be produced in microbial systems.


Asunto(s)
Escherichia coli , Células Vegetales , Escherichia coli/genética , Marcaje Isotópico/métodos , Espectroscopía de Resonancia Magnética/métodos , Células Vegetales/metabolismo , Proteínas Recombinantes/genética
5.
Bioresour Technol ; 341: 125782, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34419880

RESUMEN

The carotenoid, α-carotene, is very beneficial for human health and wellness, but microbial production of this compound is notoriously difficult, due to the asymmetric rings on either end of its terpenoid backbone. Here, we report for the first time the efficient production of α-carotene in the industrial bacterium Corynebaterium glutamicum by using a combined pathway engineering approach including evaluation of the performance of different cyclases and analysis of key metabolic intermediates to determine flux bottlenecks in the carotenoid biosynthesis pathway. A multi-copy chromosomal integration method was pivotal in achieving stable expression of the cyclases. In fed-batch fermentation, 1,054 mg/L of α-carotene was produced by the best strain, which is the highest reported titer achieved in microbial fermentation. The success of increased α-carotene production suggests that the multi-copy chromosomal integration method can be a useful metabolic engineering tool for overexpression of key enzymes in C. glutamicum and other bacterium as well.


Asunto(s)
Corynebacterium glutamicum , Carotenoides/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Fermentación , Humanos , Ingeniería Metabólica
6.
Biotechnol J ; 16(4): e2000340, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33247609

RESUMEN

Incubation at pH 4.0 or blanching at ∼65°C facilitates the purification of biopharmaceutical proteins from plants by precipitating most of the host cell proteins (HCPs) before chromatography. However, both methods are compatible only with pH or thermostable target proteins whereas many target proteins may irreversibly denature, e.g., at pH < 4.0. Here, we developed a combined pH/temperature treatment for clarified tobacco extracts and intact leaves. The latter were subjected to a blanching procedure, i.e., the submersion into a hot buffer. Using a design of experiments approach we identified conditions that remove ∼70% of HCPs at ∼55°C, using the thermosensitive antibody 2G12 and the pH-sensitive DsRed as model proteins. We found that pH and temperature exerted a combined effect during the precipitation of HCPs in the pH range 5.0-7.0 at 35°C-60°C. For clarified extracts, the temperature required to achieve a DsRed purity threshold of 20% total soluble protein (TSP) increased from 54°C to 63°C when the pH was increased from 6.4 to 7.3. The pH-stable antibody 2G12 was less responsive to the combined treatment, but the purity of 1% TSP was achieved at 35°C instead of 44°C when the pH was reduced from 6.3 to 5.8. When blanching intact leaves, product losses were not exacerbated at pH 4.0. Indeed, the highest DsRed purity (58% TSP) was achieved at this pH, combined with a temperature of 60°C and an incubation time of 30 min. In contrast, the highest 2G12 purity (0.7% TSP) was achieved at pH 5.1 and 40°C with an incubation time of 20 min. Our data suggest that a combined pH/temperature regime can avoid extreme values of either parameter; therefore, broadening the applicability of these simple purification techniques to other recombinant proteins.


Asunto(s)
Nicotiana , Hojas de la Planta , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/genética , Temperatura
7.
Artículo en Inglés | MEDLINE | ID: mdl-32432097

RESUMEN

The high-throughput screening of recombinant protein expression is advantageous during early process development because it allows the identification of optimal expression constructs and process conditions. Simple screening platforms based on microtiter plates are available for microbes and animal cells, but this was not possible for plants until the development of plant cell packs (PCPs), also known as "cookies," which provide a versatile and scalable screening tool for recombinant protein production. PCPs are prepared from plant cell suspension cultures by removing the medium and molding the biomass. PCPs can be cast into 96-well plates for high-throughput screening, but the manual handling effort currently limits the throughput to ∼500 samples per day. We have therefore integrated the PCP method with a fully automated laboratory liquid-handling station. The "robot cookies" can be prepared and infiltrated with Agrobacterium tumefaciens by centrifugation, minimizing operator handling and reducing the likelihood of errors during repeated runs, such as those required in a design of experiments approach. The accumulation of fluorescent protein in the cytosol, apoplast, endoplasmic reticulum or plastids is easily detected using an integrated plate reader, reducing the inter-experimental variation to <5%. We also developed a detergent-based chemical lysis method for protein extraction in a 96-well format, which was adapted for automated downstream processing using miniaturized columns allowing subsequent protein analysis. The new automated method reduces the costs of the platform to <0.5 € per PCP infiltration (a saving of >50%) and facilitates a five-fold increase in throughput to >2500 samples per day.

8.
J Vis Exp ; (150)2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31475984

RESUMEN

The purification of monoclonal antibodies (mAbs) is commonly achieved by Protein A affinity chromatography, which can account for up to 25% of the overall process costs. Alternative, cost-effective capture steps are therefore valuable for industrial-scale manufacturing, where large quantities of a single mAb are produced. Here we present a method for the immobilization of a DsRed-based epitope ligand to a cross-linked agarose resin allowing the selective capture of the HIV-neutralizing antibody 2F5 from crude plant extracts without using Protein A. The linear epitope ELDKWA was first genetically fused to the fluorescent protein DsRed and the fusion protein was expressed in transgenic tobacco (Nicotiana tabacum) plants before purification by immobilized metal-ion affinity chromatography. Furthermore, a method based on activated cross-linked agarose was optimized for high ligand density, efficient coupling and low costs. The pH and buffer composition and the soluble ligand concentration were the most important parameters during the coupling procedure, which was improved using a design-of-experiments approach. The resulting affinity resin was tested for its ability to selectively bind the target mAb in a crude plant extract and the elution buffer was optimized for high mAb recovery, product activity and affinity resin stability. The method can easily be adapted to other antibodies with linear epitopes. The new resins allow gentler elution conditions than Protein A and could also reduce the costs of an initial capture step for mAb production.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos ampliamente neutralizantes/química , Cromatografía de Afinidad/métodos , Anticuerpos Anti-VIH/química , Técnicas Inmunológicas/métodos , Sefarosa/química , Epítopos/química , Ligandos , Extractos Vegetales , Proteínas de Plantas , Plantas Modificadas Genéticamente , Proteína Estafilocócica A , Nicotiana/genética , Nicotiana/metabolismo
9.
Biotechnol Bioeng ; 116(9): 2236-2249, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31140580

RESUMEN

Cancer is the leading cause of death in industrialized countries. Cancer therapy often involves monoclonal antibodies or small-molecule drugs, but carbohydrate-binding lectins such as mistletoe (Viscum album) viscumin offer a potential alternative treatment strategy. Viscumin is toxic in mammalian cells, ruling them out as an efficient production system, and it forms inclusion bodies in Escherichia coli such that purification requires complex and lengthy refolding steps. We therefore investigated the transient expression of viscumin in intact Nicotiana benthamiana plants and Nicotiana tabacum Bright Yellow 2 plant-cell packs (PCPs), comparing a full-length viscumin gene construct to separate constructs for the A and B chains. As determined by capillary electrophoresis the maximum yield of purified heterodimeric viscumin in N. benthamiana was ~7 mg/kg fresh biomass with the full-length construct. The yield was about 50% higher in PCPs but reduced 10-fold when coexpressing A and B chains as individual polypeptides. Using a single-step lactosyl-Sepharose affinity resin, we purified viscumin to ~54%. The absence of refolding steps resulted in estimated cost savings of more than 80% when transient expression in tobacco was compared with E. coli. Furthermore, the plant-derived product was ~3-fold more toxic than the bacterially produced counterpart. We conclude that plants offer a suitable alternative for the production of complex biopharmaceutical proteins that are toxic to mammalian cells and that form inclusion bodies in bacteria.


Asunto(s)
Antineoplásicos Fitogénicos , Escherichia coli , Expresión Génica , Nicotiana , Células Vegetales/metabolismo , Proteínas de Plantas , Plantas Modificadas Genéticamente , Proteínas Inactivadoras de Ribosomas Tipo 2 , Toxinas Biológicas , Antineoplásicos Fitogénicos/biosíntesis , Antineoplásicos Fitogénicos/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Inactivadoras de Ribosomas Tipo 2/biosíntesis , Proteínas Inactivadoras de Ribosomas Tipo 2/genética , Proteínas Inactivadoras de Ribosomas Tipo 2/aislamiento & purificación , Nicotiana/genética , Nicotiana/metabolismo , Toxinas Biológicas/biosíntesis , Toxinas Biológicas/genética , Toxinas Biológicas/aislamiento & purificación
10.
Artículo en Inglés | MEDLINE | ID: mdl-30687700

RESUMEN

The production of biopharmaceutical proteins in plants offers many advantages over traditional expression platforms, including improved safety, greater scalability and lower upstream production costs. However, most products are retained within plant cells or the apoplastic space instead of being secreted into a liquid medium, so downstream processing necessarily involves tissue and cell disruption followed by the removal of abundant particles and host cell proteins (HCPs). We investigated whether ultrafiltration/diafiltration (UF/DF) can simplify the purification of the model recombinant protein cyanovirin-N (CVN), an ~ 11 kDa HIV-neutralizing lectin, from tobacco extracts prior to chromatography. We compared different membrane types and process conditions, and found that at pH 8.0 and 50 mS cm-1 an UF step using a 100 kDa regenerated cellulose membrane removed more than 80% of the ~ 0.75 mg mL-1 total soluble protein present in the clarified plant extract. We recovered ~ 70% of the CVN and the product purity increased ~ 3-fold in the permeate. The underlying effects of tobacco HCP retention during the UF/DF step were investigated by measuring the zeta potential and particle size distribution in the 2-10,000 nm range. Combined with a subsequent 10 kDa DF step, this approach simultaneously reduced the process volume, conditioned the process intermediate, and facilitated early, chromatography-free purification. Due to the generic, size-based nature of the method, it is likely to be compatible with most products smaller than ~50 kDa.

11.
ACS Synth Biol ; 6(12): 2183-2190, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28786662

RESUMEN

The 2013-2016 Ebola outbreak highlighted the limited treatment options and lack of rapid response strategies for emerging pathogen outbreaks. Here, we propose an efficient development cycle using glycoengineered Pichia pastoris to produce monoclonal antibody cocktails against pathogens. To enable rapid genetic engineering of P. pastoris, we introduced a genomic landing pad for reliable recombinase-mediated DNA integration. We then created strains expressing each of the three monoclonal antibodies that comprise the ZMapp cocktail, and demonstrated that the secreted antibodies bind to the Ebola virus glycoprotein by immunofluorescence assay. We anticipate that this approach could accelerate the production of therapeutics against future pathogen outbreaks.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Ebolavirus/inmunología , Expresión Génica , Pichia , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Humanos , Pichia/genética , Pichia/inmunología , Pichia/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
12.
Biotechnol J ; 10(4): 584-91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25611947

RESUMEN

Downstream processing (DSP) is a major cost factor during the production of biopharmaceutical proteins. Clarification can account for ∼40% of these costs, especially when a large amount of dispersed particulate material is generated, such as during the extraction of intracellular proteins from plants. Filter capacity can be increased (and DSP costs reduced) by using flocculants. Here we show that cellulose-based filter aids can enhance the positive effect of flocculants by improving depth filter capacity even further. A design-of-experiments (DoE) approach was used to identify the optimal size and concentration of filter aids, at different values of pH and conductivity, for the clarification of tobacco leaf extracts during the production of a monoclonal antibody and a fluorescent protein. Filter aids ∼28 or ∼100 µm in length at concentrations of ∼10 and ∼5 g L(-1) respectively were most efficient in combination with a strong cationic flocculant, but were ineffective without the flocculant. The filter aids increased depth filter capacity by 35-fold compared to an additive-free extract reaching ∼1000 L m(-2) without affecting the target proteins. Thus, filter aids can be used to reduce production costs of plant-derived biopharmaceuticals while the DoE approach enabled the identification of robust process conditions.


Asunto(s)
Biotecnología/instrumentación , Celulosa/química , Filtración/instrumentación , Proteínas de Plantas/aislamiento & purificación , Biotecnología/métodos , Filtración/métodos , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...