Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Mater Chem A Mater ; 12(31): 20386-20402, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39114766

RESUMEN

In this work, we show how the activity states of bimetallic Ni0-Fe0 catalysts exsolved from Nd0.6Ca0.4Fe0.97Ni0.03O3-δ (NCFNi) can be influenced electrochemically. The NCFNi parent oxide was employed in the form of thin film mixed conducting model electrodes, which were operated in a humid hydrogen atmosphere. By precisely controlling the oxygen chemical potential in the parent oxide electrode via applying an electrochemical polarisation, we managed to selectively exsolve Ni nanoparticles from the perovskite lattice and study their catalytic activity switching characteristics. To be able to track the surface chemical changes during the switching process, electrochemical polarisation experiments were combined with near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) measurements. This in situ analytical approach allowed relating the difference we observed in the switching behaviour of Ni particles here and of Fe particles in a recent study, to a different kinetic interplay between electrochemical driving force and atmosphere. We propose that slow oxygen transport through nickel oxide, located at the particle/perovskite interface, is mainly responsible for the observed difference to iron exsolutions, which becomes especially evident for larger nickel particles. In addition, in the case of bimetallic exsolutions and with applied bias voltage as a control parameter, we are able to reversibly switch between three different activity states, namely bimetallic Ni0-Fe0 (medium activity), pure Ni0 (high activity), and the inactive oxides.

3.
Neuroimage ; : 120792, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147294

RESUMEN

BACKGROUND: Executive dysfunction such as inattention or forgetfulness can lead to disruptions in a person's daily functioning and quality of life. OBJECTIVE/HYPOTHESIS: This triple-blinded randomized clinical trial assessed the efficacy of bifrontal (over the forehead) transcranial direct current stimulation (tDCS) concurrent with cognitive training to improve cognitive performance in a healthy sample. METHODS: Fifty-eight participants were randomly assigned to one of three stimulation conditions (2mA left anode-right cathode, 2mA right anode-left cathode, or sham), which was administered with cognitive training tasks 3x/week over 12 weeks with assessments at baseline, midpoint (6 weeks), and post-training (12 weeks). We assessed cognitive performance, functional connectivity, and the influence of individual differences in training advancement. RESULTS: Forty participants completed training. We found that at midpoint and post, all groups improved significantly on overall cognitive performance. The left anode group's attention & vigilance score improved significantly at post, but the other two groups did not. Greater attention training advancement predicted attention improvement by post, most notably in the left anode group. Finally, within-network connectivity decreased in the control network and increased in the somatomotor network across all groups. CONCLUSIONS: These results suggest that, given cognitive training, the left anode montage is more effective at improving attention than the right anode montage and sham. Future research may focus on the application of the left anode montage during cognitive training to assess its effectiveness in improving cognition in neuropsychiatric disorders.

4.
bioRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39005474

RESUMEN

Background: Repetitive transcranial magnetic stimulation (rTMS) induces long-term changes of synapses, but the mechanisms behind these modifications are not fully understood. Although there has been progress in the development of multi-scale modeling tools, no comprehensive module for simulating rTMS-induced synaptic plasticity in biophysically realistic neurons exists.. Objective: We developed a modelling framework that allows the replication and detailed prediction of long-term changes of excitatory synapses in neurons stimulated by rTMS. Methods: We implemented a voltage-dependent plasticity model that has been previously established for simulating frequency-, time-, and compartment-dependent spatio-temporal changes of excitatory synapses in neuronal dendrites. The plasticity model can be incorporated into biophysical neuronal models and coupled to electrical field simulations. Results: We show that the plasticity modelling framework replicates long-term potentiation (LTP)-like plasticity in hippocampal CA1 pyramidal cells evoked by 10-Hz repetitive magnetic stimulation (rMS). This plasticity was strongly distance dependent and concentrated at the proximal synapses of the neuron. We predicted a decrease in the plasticity amplitude for 5 Hz and 1 Hz protocols with decreasing frequency. Finally, we successfully modelled plasticity in distal synapses upon local electrical theta-burst stimulation (TBS) and predicted proximal and distal plasticity for rMS TBS. Notably, the rMS TBS-evoked synaptic plasticity exhibited robust facilitation by dendritic spikes and low sensitivity to inhibitory suppression. Conclusion: The plasticity modelling framework enables precise simulations of LTP-like cellular effects with high spatio-temporal resolution, enhancing the efficiency of parameter screening and the development of plasticity-inducing rTMS protocols.

5.
J Neural Eng ; 21(2)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38530297

RESUMEN

Objective. Transcranial alternating current stimulation (tACS) can be used to non-invasively entrain neural activity and thereby cause changes in local neural oscillatory power. Despite its increased use in cognitive and clinical neuroscience, the fundamental mechanisms of tACS are still not fully understood.Approach. We developed a computational neuronal network model of two-compartment pyramidal neurons (PY) and inhibitory interneurons, which mimic the local cortical circuits. We modeled tACS with electric field strengths that are achievable in human applications. We then simulated intrinsic network activity and measured neural entrainment to investigate how tACS modulates ongoing endogenous oscillations.Main results. The intensity-specific effects of tACS are non-linear. At low intensities (<0.3 mV mm-1), tACS desynchronizes neural firing relative to the endogenous oscillations. At higher intensities (>0.3 mV mm-1), neurons are entrained to the exogenous electric field. We then further explore the stimulation parameter space and find that the entrainment of ongoing cortical oscillations also depends on stimulation frequency by following an Arnold tongue. Moreover, neuronal networks can amplify the tACS-induced entrainment via synaptic coupling and network effects. Our model shows that PY are directly entrained by the exogenous electric field and drive the inhibitory neurons.Significance. The results presented in this study provide a mechanistic framework for understanding the intensity- and frequency-specific effects of oscillating electric fields on neuronal networks. This is crucial for rational parameter selection for tACS in cognitive studies and clinical applications.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Células Piramidales , Neuronas/fisiología
6.
Proc Natl Acad Sci U S A ; 121(14): e2318528121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536752

RESUMEN

Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.


Asunto(s)
Memoria a Corto Plazo , Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Memoria a Corto Plazo/fisiología , Ritmo Gamma/fisiología , Encéfalo , Cognición/fisiología , Trastornos de la Memoria , Estimulación Transcraneal de Corriente Directa/métodos
7.
Nat Commun ; 15(1): 1687, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402188

RESUMEN

The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.


Asunto(s)
Encéfalo , Neuronas , Animales , Neuronas/fisiología , Primates , Potenciales de Acción/fisiología
9.
J Neurosci ; 43(50): 8649-8662, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37852789

RESUMEN

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that is rapidly growing in popularity for studying causal brain-behavior relationships. However, its dose-dependent centrally induced neural mechanisms and peripherally induced sensory costimulation effects remain debated. Understanding how TMS stimulation parameters affect brain responses is vital for the rational design of TMS protocols. Studying these mechanisms in humans is challenging because of the limited spatiotemporal resolution of available noninvasive neuroimaging methods. Here, we leverage invasive recordings of local field potentials in a male and a female nonhuman primate (rhesus macaque) to study TMS mesoscale responses. We demonstrate that early TMS-evoked potentials show a sigmoidal dose-response curve with stimulation intensity. We further show that stimulation responses are spatially specific. We use several control conditions to dissociate centrally induced neural responses from auditory and somatosensory coactivation. These results provide crucial evidence regarding TMS neural effects at the brain circuit level. Our findings are highly relevant for interpreting human TMS studies and biomarker developments for TMS target engagement in clinical applications.SIGNIFICANCE STATEMENT Transcranial magnetic stimulation (TMS) is a widely used noninvasive brain stimulation method to stimulate the human brain. To advance its utility for clinical applications, a clear understanding of its underlying physiological mechanisms is crucial. Here, we perform invasive electrophysiological recordings in the nonhuman primate brain during TMS, achieving a spatiotemporal precision not available in human EEG experiments. We find that evoked potentials are dose dependent and spatially specific, and can be separated from peripheral stimulation effects. This means that TMS-evoked responses can indicate a direct physiological stimulation response. Our work has important implications for the interpretation of human TMS-EEG recordings and biomarker development.


Asunto(s)
Electroencefalografía , Estimulación Magnética Transcraneal , Masculino , Humanos , Femenino , Animales , Estimulación Magnética Transcraneal/métodos , Electroencefalografía/métodos , Macaca mulatta , Potenciales Evocados/fisiología , Biomarcadores , Potenciales Evocados Motores/fisiología
10.
Hum Brain Mapp ; 44(17): 6275-6287, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37750607

RESUMEN

In many clinical trials involving transcranial electrical stimulation (tES), target electrodes are typically placed over DLPFC with the assumption that this will primarily stimulate the underlying brain region. However, our study aimed to evaluate the electric fields (EF) that are actually delivered and identify prefrontal regions that may be inadvertently targeted in DLPFC tES. Head models were generated from the Human Connectome Project database's T1 + T2-weighted MRIs of 80 healthy adults. Two common DLPFC montages were simulated; symmetric-F4/F3, and asymmetric-F4/Fp1. Averaged EF was extracted from (1) the center of the target electrode (F4), and (2) the top 1% of voxels showing the strongest EF in individualized EF maps. Interindividual variabilities were quantified with the standard deviation of EF peak location/value. Similar steps were repeated with 66 participants with methamphetamine use disorder (MUDs) as an independent clinical population. In healthy adults, the group-level location of EF peaks was situated in the medial-frontopolar, and the individualized EF peaks were positioned in a cube with a volume of 29 cm3 /46 cm3 (symmetric/asymmetric montages). EFs in the frontopolar area were significantly higher than EF "under" the target electrode in both symmetric (peak: 0.41 ± 0.06, F4:0.22 ± 0.04) and asymmetric (peak: 0.38 ± 0.04, F4:0.2 ± 0.04) montages (Heges'g > 0.7). Similar results with slight between-group differences were found in MUDs. We highlighted that in common DLPFC tES montages, in addition to interindividual/intergroup variability, the frontopolar received the highest EFs rather than DLPFC as the main target. We specifically recommended considering the potential involvement of the frontopolar area as a mechanism underlying the effectiveness of DLPFC tES protocols.


Asunto(s)
Corteza Prefontal Dorsolateral , Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo/fisiología , Electrodos , Corteza Prefrontal/diagnóstico por imagen
11.
Comput Biol Med ; 166: 107516, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37769460

RESUMEN

BACKGROUND: Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. TACS experiments have been coupled with computational simulations to predict the electromagnetic fields within the brain. However, existing simulations are focused on the magnitude of the field. As the possibility of inducing the phase gradient in the brain using multiple tACS electrodes arises, a simulation framework is necessary to investigate and predict the phase gradient of electric fields during multi-channel tACS. OBJECTIVE: Here, we develop such a framework for phasor simulation using phasor algebra and evaluate its accuracy using in vivo recordings in monkeys. METHODS: We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models. RESULTS: Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues' conductivity. CONCLUSIONS: Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.

12.
Neuroimage ; 279: 120343, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619797

RESUMEN

Non-human primates (NHPs) have become key for translational research in noninvasive brain stimulation (NIBS). However, in order to create comparable stimulation conditions for humans it is vital to study the accuracy of current modeling practices across species. Numerical models to simulate electric fields are an important tool for experimental planning in NHPs and translation to human studies. It is thus essential whether and to what extent the anatomical details of NHP models agree with current modeling practices when calculating NIBS electric fields. Here, we create highly accurate head models of two non-human primates (NHP) MR data. We evaluate how muscle tissue and head field of view (depending on MRI parameters) affect simulation results in transcranial electric and magnetic stimulation (TES and TMS). Our findings indicate that the inclusion of anisotropic muscle can affect TES electric field strength up to 22% while TMS is largely unaffected. Additionally, comparing a full head model to a cropped head model illustrates the impact of head field of view on electric fields for both TES and TMS. We find opposing effects between TES and TMS with an increase up to 24.8% for TES and a decrease up to 24.6% for TMS for the cropped head model compared to the full head model. Our results provide important insights into the level of anatomical detail needed for NHP head models and can inform future translational efforts for NIBS studies.


Asunto(s)
Electricidad , Primates , Animales , Humanos , Anisotropía , Simulación por Computador , Encéfalo
13.
Res Sq ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398344

RESUMEN

Background: Comprehensive Behavioral Intervention for Tics (CBIT) is a first-line treatment for tic disorders that aims to improve controllability over tics that an individual finds distressing or impairing. However, it is only effective for approximately half of patients. Supplementary motor area (SMA)-directed neurocircuitry plays a strong role in motor inhibition, and activity in this region is thought to contribute to tic expression. Targeted modulation of SMA using transcranial magnetic stimulation (TMS) may increase CBIT efficacy by improving patient ability to implement tic controllability behaviors. Methods: The CBIT+TMS trial is a two-phase, milestone driven early-stage randomized controlled trial. The trial will test whether augmenting CBIT with inhibitory, noninvasive stimulation of SMA with TMS modifies activity in SMA-mediated circuits and enhances tic controllability in youth ages 12-21 years with chronic tics. Phase 1 will directly compare two rTMS augmentation strategies (1Hz rTMS vs. cTBS) vs. sham in N = 60 participants. Quantifiable, a priori "Go/No Go Criteria" guide the decision to proceed to Phase 2 and selection of the optimal TMS regimen. Phase 2 will compare the optimal regimen vs. sham and test the link between neural target engagement and clinical outcomes in a new sample of N = 60 participants. Discussion: This clinical trial is one of few to date testing TMS augmentation of therapy in a pediatric sample. Results will provide insight into whether TMS is a potentially viable strategy for enhancing CBIT efficacy and reveal potential neural and behavioral mechanisms of change. Trial registration: ClinicalTrials.gov Identifier: NCT04578912.

14.
Trials ; 24(1): 439, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400828

RESUMEN

BACKGROUND: Comprehensive Behavioral Intervention for Tics (CBIT) is a first-line treatment for tic disorders that aims to improve controllability over tics that an individual finds distressing or impairing. However, it is only effective for approximately half of patients. Supplementary motor area (SMA)-directed neurocircuitry plays a strong role in motor inhibition, and activity in this region is thought to contribute to tic expression. Targeted modulation of SMA using transcranial magnetic stimulation (TMS) may increase CBIT efficacy by improving patients' ability to implement tic controllability behaviors. METHODS: The CBIT + TMS trial is a two-phase, milestone-driven early-stage randomized controlled trial. The trial will test whether augmenting CBIT with inhibitory, non-invasive stimulation of SMA with TMS modifies activity in SMA-mediated circuits and enhances tic controllability in youth ages 12-21 years with chronic tics. Phase 1 will directly compare two rTMS augmentation strategies (1 Hz rTMS vs. cTBS) vs. sham in N = 60 participants. Quantifiable, a priori "Go/No Go Criteria" guide the decision to proceed to phase 2 and the selection of the optimal TMS regimen. Phase 2 will compare the optimal regimen vs. sham and test the link between neural target engagement and clinical outcomes in a new sample of N = 60 participants. DISCUSSION: This clinical trial is one of few to date testing TMS augmentation of therapy in a pediatric sample. The results will provide insight into whether TMS is a potentially viable strategy for enhancing CBIT efficacy and reveal potential neural and behavioral mechanisms of change. TRIAL REGISTRATION: ClinicalTrials.gov NCT04578912 . Registered on October 8, 2020.


Asunto(s)
Trastornos de Tic , Tics , Síndrome de Tourette , Humanos , Adolescente , Niño , Tics/diagnóstico , Tics/terapia , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento , Trastornos de Tic/terapia , Terapia Conductista/métodos , Síndrome de Tourette/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto
15.
J Mater Chem A Mater ; 11(24): 12827-12836, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37346740

RESUMEN

Minimizing the overpotential at the air electrode of solid oxide fuel cells (SOFC) is one of the key challenges regarding a broad applicability of this technology. Next to novel materials and geometry optimization, surface modification is a promising and flexible method to alter the oxygen exchange kinetics at SOFC cathode surfaces. Despite extensive research, the mechanism behind the effect of surface decorations is still under debate. Moreover, for Sr decoration, previous studies yielded conflicting results, reporting either a beneficial or a detrimental impact on the oxygen exchange kinetics. In this contribution, in situ impedance spectroscopy during pulsed laser deposition was used to investigate the effect of Sr containing decorations under different deposition conditions. Depending on deposition temperature and interactions with the gas phase, opposing effects of Sr decoration were found. In combination with near-ambient pressure X-ray photoelectron spectroscopy and non-ambient X-ray diffractometry, it was possible to trace this phenomenon back to different chemical environments of the surface Sr. At high temperatures, Sr is deposited as SrO, which can have a beneficial effect on the oxygen exchange kinetics. At low temperatures, SrCO3 adsorbates are formed from trace amounts of CO2 in the measurement atmosphere, causing a decrease of the oxygen exchange rate. These results are in excellent agreement with the concept of surface acidity as a descriptor for the effect of surface decorations, providing further insight into the oxygen exchange kinetics on SOFC cathode surfaces and its degradation. In addition, this study shows that Sr segregation itself initially does not lead to performance degradation but that segregated SrO readily reacts with acidic compounds, reducing the catalytic capability of mixed conducting oxides.

16.
ACS Appl Mater Interfaces ; 15(22): 26787-26798, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37212575

RESUMEN

The oxygen exchange kinetics of epitaxial Pr0.1Ce0.9O2-δ electrodes was modified by decoration with submonolayer amounts of different basic (SrO, CaO) and acidic (SnO2, TiO2) binary oxides. The oxygen exchange reaction (OER) rate and the total conductivity were measured by in situ PLD impedance spectroscopy (i-PLD), which allows to directly track changes of electrochemical properties after each deposited pulse of surface decoration. The surface chemistry of the electrodes was investigated by near-ambient pressure XPS measurements (NAP-XPS) at elevated temperatures and by low-energy ion scattering (LEIS). While a significant alteration of the OER rate was observed after decoration with binary oxides, the pO2 dependence of the surface exchange resistance and its activation energy were not affected, suggesting that surface decorations do not alter the fundamental OER mechanism. Furthermore, the total conductivity of the thin films does not change upon decoration, indicating that defect concentration changes are limited to the surface layer. This is confirmed by NAP-XPS measurements which find only minor changes of the Pr-oxidation state upon decoration. NAP-XPS was further employed to investigate changes of the surface potential step on decorated surfaces. From a mechanistic point of view, our results indicate a correlation between the surface potential and the altered oxygen exchange activity. Oxidic decorations induce a surface charge which depends on their acidity (acidic oxides lead to a negative surface charge), affecting surface defect concentrations, any existing surface potential step, potentially adsorption dynamics, and consequently also the OER kinetics.

17.
EES Catal ; 1(3): 274-289, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37213935

RESUMEN

A new type of catalyst preparation yields its active sites not by infiltration but exsolution of reducible transition metals of its own host lattice. These exsolution catalysts offer a high dispersion of catalytically active particles, slow agglomeration, and the possibility of reactivation after poisoning due to redox cycling. The formation of exsolved particles by partial decomposition of the host lattice can be driven by applying a sufficiently reducing atmosphere, elevated temperatures but also by a cathodic bias voltage (provided the host perovskite is an electrode on an oxide ion conducting electrolyte). In addition, such an electrochemical polarisation can change the oxidation state and thus the catalytic activity of exsolved particles. In this work, we investigate the electrochemical switching between an active and an inactive state of iron particles exsolved from thin film mixed conducting model electrodes, namely La0.6Sr0.4FeO3-δ (LSF) and Nd0.6Ca0.4FeO3-δ (NCF), in humid hydrogen atmospheres. We show that the transition between two activity states exhibits a hysteresis-like behaviour in the electrochemical I-V characteristics. Ambient pressure XPS measurements proofed that this hysteresis is linked to the oxidation and reduction of iron particles. Furthermore, it is demonstrated that the surface kinetics of the host material itself has only a negligible impact on the particle exsolution, and that the main impact factors are the surrounding atmosphere as well as the applied electrochemical overpotential. In particular, we suggest a 'kinetic competition' between gas atmosphere and oxygen chemical potential in the mixed conducting electrode and discuss possible ways of how this process takes place.

18.
medRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37066153

RESUMEN

Background: Previous studies in people with substance use disorders (SUDs) have implicated both the frontopolar cortex and amygdala in drug cue reactivity and craving, and amygdala-frontopolar coupling is considered a marker of early relapse risk. Accumulating data highlight that the frontopolar cortex can be considered a promising therapeutic target for transcranial magnetic stimulation (TMS) in SUDs. However, one-size-fits-all approaches to TMS targets resulted in substantial variation in both physiological and behavioral outcomes. Individualized TMS approaches to target cortico-subcortical circuits like amygdala-frontopolar have not yet been investigated in SUDs. Objective: Here, we (1) defined individualized TMS target location based on functional connectivity of the amygdala-frontopolar circuit while people were exposed to drug-related cues, (2) optimized coil orientation based on maximizing electric field (EF) perpendicular to the individualized target, and (3) harmonized EF strength in targeted brain regions across a population. Method: MRI data including structural, resting-state, and task-based fMRI data were collected from 60 participants with methamphetamine use disorders (MUDs). Craving scores based on a visual analog scale were collected immediately before and after the MRI session. We analyzed inter-subject variability in the location of TMS targets based on the maximum task-based connectivity between the left medial amygdala (with the highest functional activity among subcortical areas during drug cue exposure) and frontopolar cortex using psychophysiological interaction (PPI) analysis. Computational head models were generated for all participants and EF simulations were calculated for fixed vs. optimized coil location (Fp1/Fp2 vs. individualized maximal PPI location), orientation (AF7/AF8 vs. orientation optimization algorithm), and stimulation intensity (constant vs. adjusted intensity across the population). Results: Left medial amygdala with the highest (mean ± SD: 0.31±0.29) functional activity during drug cue exposure was selected as the subcortical seed region. Amygdala-to-whole brain PPI analysis showed a significant cluster in the prefrontal cortex (cluster size: 2462 voxels, cluster peak in MNI space: [25 39 35]) that confirms cortico-subcortical connections. The location of the voxel with the most positive amygdala-frontopolar PPI connectivity in each participant was considered as the individualized TMS target (mean ± SD of the MNI coordinates: [12.6 64.23 -0.8] ± [13.64 3.50 11.01]). Individual amygdala-frontopolar PPI connectivity in each participant showed a significant correlation with VAS scores after cue exposure (R=0.27, p=0.03). Averaged EF strength in a sphere with r = 5mm around the individualized target location was significantly higher in the optimized (mean ± SD: 0.99 ± 0.21) compared to the fixed approach (Fp1: 0.56 ± 0.22, Fp2: 0.78 ± 0.25) with large effect sizes (Fp1: p = 1.1e-13, Hedges'g = 1.5, Fp2: p = 1.7e-5, Hedges'g = 1.26). Adjustment factor to have identical 1 V/m EF strength in a 5mm sphere around the individualized targets ranged from 0.72 to 2.3 (mean ± SD: 1.07 ± 0.29). Conclusion: Our results show that optimizing coil orientation and stimulation intensity based on individualized TMS targets led to stronger electric fields in the targeted brain regions compared to a one-size-fits-all approach. These findings provide valuable insights for refining TMS therapy for SUDs by optimizing the modulation of cortico-subcortical circuits.

19.
bioRxiv ; 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37066288

RESUMEN

Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. Neural oscillations exhibit phase-dependent associations with cognitive functions, and tools to manipulate local oscillatory phases can affect communication across remote brain regions. A recent study demonstrated that multi-channel tACS can generate electric fields with a phase gradient or traveling waves in the brain. Computational simulations using phasor algebra can predict the phase distribution inside the brain and aid in informing parameters in tACS experiments. However, experimental validation of computational models for multi-phase tACS is still lacking. Here, we develop such a framework for phasor simulation and evaluate its accuracy using in vivo recordings in nonhuman primates. We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models. Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues’ conductivity. Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.

20.
J Phys Chem Lett ; 14(8): 2065-2071, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36798987

RESUMEN

Three different platinum oxides are observed by in situ X-ray diffraction during electrochemical potential cycles of platinum thin film model electrodes on yttria-stabilized zirconia (YSZ) at a temperature of 702 K in air. Scanning electron microscopy and atomic force microscopy performed before and after the in situ electrochemical X-ray experiments indicate that approximately 20% of the platinum electrode has locally delaminated from the substrate by forming pyramidlike blisters. The oxides and their locations are identified as (1) an ultrathin PtOx at the buried Pt/YSZ interface, which forms reversibly upon anodic polarization; (2) polycrystalline ß-PtO2, which forms irreversibly upon anodic polarization on the inside of the blisters; and (3) an ultrathin α-PtO2 at the Pt/air interface, which forms by thermal oxidation and which does not depend on the electrochemical polarization. Thermodynamic and kinetic aspects are discussed to explain the coexistence of multiple phases at the same electrochemical conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA