Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 945-949, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086450

RESUMEN

Automated Electrocardiogram (ECG) classification using deep neural networks requires large datasets annotated by medical professionals, which is time-consuming and expensive. This work examines ECG augmentation as a method for enriching existing datasets at low cost. First, we introduce three novel augmentations: Limb Electrode Move and Chest Electrode Move both simulate a minor electrode mislocation during signal measurement, and Heart Vector Transform generates an ECG by modeling a rotated main heart axis. These techniques are then combined with nine time series signal augmentations from literature. Evaluation was performed on ICBEB, PTB-XL Diagnostic, PTB-XL Rhythm, and PTB-XL Form datasets. Compared to models trained without data augmentation, area under the receiver operating characteristic curve (AUC) was increased by 3.5%, 1.7%, 1.4% and 3.5%, respectively. Our experiments demonstrated that data augmentation can improve deep learning performance in ECG classification. Analyses of the individual augmentation effects established the efficacy of the three proposed augmentations.


Asunto(s)
Aprendizaje Profundo , Electrocardiografía/métodos , Redes Neurales de la Computación , Curva ROC
2.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616939

RESUMEN

Driver monitoring systems play an important role in lower to mid-level autonomous vehicles. Our work focuses on the detection of cognitive load as a component of driver-state estimation to improve traffic safety. By inducing single and dual-task workloads of increasing intensity on 51 subjects, while continuously measuring signals from multiple modalities, based on physiological measurements such as ECG, EDA, EMG, PPG, respiration rate, skin temperature and eye tracker data, as well as behavioral measurements such as action units extracted from facial videos, performance metrics like reaction time and subjective feedback using questionnaires, we create ADABase (Autonomous Driving Cognitive Load Assessment Database) As a reference method to induce cognitive load onto subjects, we use the well-established n-back test, in addition to our novel simulator-based k-drive test, motivated by real-world semi-autonomously vehicles. We extract expert features of all measurements and find significant changes in multiple modalities. Ultimately we train and evaluate machine learning algorithms using single and multimodal inputs to distinguish cognitive load levels. We carefully evaluate model behavior and study feature importance. In summary, we introduce a novel cognitive load test, create a cognitive load database, validate changes using statistical tests, introduce novel classification and regression tasks for machine learning and train and evaluate machine learning models.


Asunto(s)
Conducción de Automóvil , Carga de Trabajo , Humanos , Conducción de Automóvil/psicología , Aprendizaje Automático , Tiempo de Reacción , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA