Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (191)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36715425

RESUMEN

Body size is an important functional trait that can be used as a bioindicator to assess the impacts of perturbations in natural communities. Community size structure responds to biotic and abiotic gradients, including anthropogenic perturbations across taxa and ecosystems. However, the manual measurement of small-bodied organisms such as benthic macroinvertebrates (e.g., >500 µm to a few centimeters long) is time-consuming. To expedite the estimation of community size structure, here, we developed a protocol to semi-automatically measure the individual body size of preserved river macroinvertebrates, which are one of the most commonly used bioindicators for assessing the ecological status of freshwater ecosystems. This protocol is adapted from an existing methodology developed to scan marine mesozooplankton with a scanning system designed for water samples. The protocol consists of three main steps: (1) scanning subsamples (fine and coarse sample size fractions) of river macroinvertebrates and processing the digitized images to individualize each detected object in each image; (2) creating, evaluating, and validating a learning set through artificial intelligence to semi-automatically separate the individual images of macroinvertebrates from detritus and artifacts in the scanned samples; and (3) depicting the size structure of the macroinvertebrate communities. In addition to the protocol, this work includes the calibration results and enumerates several challenges and recommendations to adapt the procedure to macroinvertebrate samples and to consider for further improvements. Overall, the results support the use of the presented scanning system for the automatic body size measurement of river macroinvertebrates and suggest that the depiction of their size spectrum is a valuable tool for the rapid bioassessment of freshwater ecosystems.


Asunto(s)
Ecosistema , Invertebrados , Animales , Monitoreo del Ambiente/métodos , Inteligencia Artificial , Agua Dulce , Ríos
2.
ACS ES T Water ; 1(12): 2470-2476, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34918010

RESUMEN

Determination of the levels of heavy metal ions would support assessment of sources and pathways of water pollution. However, traditional spatial assessment by manual sampling and off-site detection in the laboratory is expensive and time-consuming and requires trained personnel. Aiming to fill the gap between on-site automatic approaches and laboratory techniques, we developed an autonomous sensing boat for on-site heavy metal detection using square-wave anodic stripping voltammetry. A fluidic sensing system was developed to integrate into the boat as the critical sensing component and could detect ≤1 µg/L Pb, ≤6 µg/L Cu, and ≤71 µg/L Cd simultaneously in the laboratory. Once its integration was completed, the autonomous sensing boat was tested in the field, demonstrating its ability to distinguish the highest concentration of Pb in an effluent of a galena-enriched mine compared to those at other sites in the stream (Osor Stream, Girona, Spain).

3.
Front Microbiol ; 12: 741750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790181

RESUMEN

In recent decades, human activity coupled with climate change has led to a deterioration in the quality of surface freshwater. This has been related to an increase in the appearance of algal blooms, which can produce organic compounds that can be toxic or can affect the organoleptic characteristics of the water, such as its taste and odor. Among these latter compounds is geosmin, a metabolite produced by certain cyanobacteria that confers an earthy taste to water and which can be detected by humans at very low concentrations (nanogram per liter). The difficulty and cost of both monitoring the presence of this compound and its treatment is a problem for drinking water treatment companies, as the appearance of geosmin affects consumer confidence in the quality of the drinking water they supply. In this field study, the evaluation of four sampling sites with different physicochemical conditions located in the upper part of the Ter River basin, a Mediterranean river located in Catalonia (NE Spain), has been carried out, with the aim of identifying the main triggers of geosmin episodes. The results, obtained from 1 year of sampling, have made it possible to find out that: (i) land uses with a higher percentage of agricultural and industrial activity are related to high nutrient conditions in river water, (ii) these higher nutrient concentrations favor the development of benthic cyanobacteria, (iii) in late winter-early spring, when these cyanobacteria are subjected to both an imbalance of the dissolved inorganic nitrogen and soluble reactive phosphorus ratio, guided by a phosphorus concentration increase, and to cold-mild temperatures close to 10°C, they produce and release geosmin, and (iv) 1-2 weeks after cyanobacteria reach a high relative presence in the whole biofilm, an increase in geosmin concentration in water is observed, probably associated with the cyanobacteria detachment from cobbles and consequent cell lysis. These results could serve as a guide for drinking water treatment companies, indicating under what conditions they can expect the appearance of geosmin episodes and implement the appropriate treatment before it reaches consumers' tap.

4.
Sci Total Environ ; 768: 144473, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33453535

RESUMEN

The global increase of cyanobacterial blooms occurrence has been associated with the presence of compounds that generate earthy and musty odor in freshwater systems, among which geosmin stands out. The lack of information on the factors associated to geosmin production by benthic organisms has driven the development of this study, whose main goal is to determine the effects of nutrient concentration and DIN:SRP ratio on geosmin formation and release. The experiment was performed in 18 microcosms under controlled conditions for 21 days, using a natural biofilm suspension from Ter river (NE, Spain) to promote biofilm settlement. Six treatments were set crossing three DIN:SRP ratios (A = 4:1, B = 16:1 and C = 64:1) with two nutrient concentrations (Low and High). After 7 days of experiment, geosmin was detected in biofilm, being higher under high nutrient concentration and low DIN:SRP ratio conditions. In this treatment, geosmin in biofilm reached its maximum concentration at day 16 (3.8 ± 0.9 ng/mg), decreasing at the end of the experiment (21d) due to cyanobacteria detachment and geosmin release into the water (136 ± 6 ng/L). Overall, this experimental study showed that high nutrient concentration and low DIN:SRP ratio favored the Oscillatoria genus development within biofilm communities, generating the optimal conditions for geosmin production. The interaction between these two factors was demonstrated to be a potential driver of benthic geosmin production and release, and should be monitored and controlled in rivers exploited for drinking water purposes.


Asunto(s)
Naftoles , Odorantes , Biopelículas , Nutrientes , Odorantes/análisis , España
5.
Front Microbiol ; 10: 3002, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31993033

RESUMEN

Hydro-morphological alterations in water bodies caused by climate change and human activities affects the ecosystem functioning and generate important water quality problems. Some of these alterations can generate an increase in cyanobacterial blooms, which are associated with the appearance of bad taste and odorous compounds such as geosmin. The factors that trigger their production are still unclear, and this inability to predict geosmin episodes provokes economic problems for water supply companies. This study aims to evaluate the effects of water flow and light availability on biofilm development and intracellular geosmin formation. A mesocosm experiment was performed between February-April, 2019. The mesocosms were a set of 10 outdoor 3 m long flumes, with a continuous water supply from the Ter river (Catalonia, NE Spain). Two light intensities were established: natural light and light reduced to 80%, combined with five gradual water flows from 0.09 to 1.10 L/s. Water samples were taken to analyze nutrients, and biofilm samples, to analyze geosmin concentration, chlorophyll a and the community. Geosmin in biofilm was detected in those treatments in which Oscillatoria sp. appeared. The concentration of intracellular geosmin was higher at lower water flows (0.09 and 0.18 L/s), and the highest (2.12 mg/g) was found in the flume with the lowest water flow (0.09 L/s) and irradiation (20%). This flume was the one that presented a greater concentration of Oscillatoria sp. (21% of the community). It stands out that, when geosmin in biofilm was found, the dissolved inorganic nitrogen and soluble reactive phosphorus ratio decreased, from an average of 417:1 to 14:1. This was mainly due to an increase in inorganic phosphorus concentration generated by a change in the nutrient uptake capacity of the community's biofilm. The results obtained in this study indicated the potential implications for stream ecosystem management to control geosmin appearance. Likewise, they could be used as an early warning system, establishing that in times of drought, which lead to a general decrease in river water flow, the situation could be optimal for the appearance and development of geosmin producing cyanobacteria in low-flow areas near the river banks.

6.
Environ Pollut ; 224: 759-770, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28057374

RESUMEN

In spite of being a widespread activity causing the salinization of rivers worldwide, the impact of potash mining on river ecosystems is poorly understood. Here we used a mesocosm approach to test the effects of a salt effluent coming from a potash mine on algal and aquatic invertebrate communities at different concentrations and release modes (i.e. press versus pulse releases). Algal biomass was higher in salt treatments than in control (i.e. river water), with an increase in salt-tolerant diatom species. Salt addition had an effect on invertebrate community composition that was mainly related with changes in the abundance of certain taxa. Short (i.e. 48 h long) salt pulses had no significant effect on the algal and invertebrate communities. The biotic indices showed a weak response to treatment, with only the treatment with the highest salt concentration causing a consistent (i.e. according to all indices) reduction in the ecological quality of the streams and only by the end of the study. Overall, the treatment's effects were time-dependent, being more clear by the end of the study. Our results suggest that potash mining has the potential to significantly alter biological communities of surrounding rivers and streams, and that specific biotic indices to detect salt pollution should be developed.


Asunto(s)
Mezclas Complejas/farmacología , Ecosistema , Minería , Ríos , Contaminantes Químicos del Agua/farmacología , Animales , Biomasa , Mezclas Complejas/análisis , Diatomeas , Ecología , Monitoreo del Ambiente/métodos , Agua Dulce , Invertebrados/efectos de los fármacos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...