Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Front Cell Infect Microbiol ; 13: 1216492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965256

RESUMEN

Introduction: A strong epidemiologic link exists between cigarette smoke (CS) exposure and susceptibility to tuberculosis (TB). Macrophage and murine studies showed that CS and nicotine impair host-protective immune cells against Mycobacterium tuberculosis (MTB) infection. While CS and nicotine may activate T regulatory cells (Tregs), little is known about how CS may affect these immunosuppressive cells with MTB infection. Methods: We investigated whether CS-exposed Tregs could exacerbate MTB infection in co-culture with human macrophages and in recipient mice that underwent adoptive transfer of Tregs from donor CS-exposed mice. Results: We found that exposure of primary human Tregs to CS extract impaired the ability of unexposed human macrophages to control an MTB infection by inhibiting phagosome-lysosome fusion and autophagosome formation. Neutralizing CTLA-4 on the CS extract-exposed Tregs abrogated the impaired control of MTB infection in the macrophage and Treg co-cultures. In Foxp3+GFP+DTR+ (Thy1.2) mice depleted of endogenous Tregs, adoptive transfer of Tregs from donor CS-exposed B6.PL(Thy1.1) mice with subsequent MTB infection of the Thy1.2 mice resulted in a greater burden of MTB in the lungs and spleens than those that received Tregs from air-exposed mice. Mice that received Tregs from donor CS-exposed mice and infected with MTB had modest but significantly reduced numbers of interleukin-12-positive dendritic cells and interferon-gamma-positive CD4+ T cells in the lungs, and an increased number of total programmed cell death protein-1 (PD-1) positive CD4+ T cells in both the lungs and spleens. Discussion: Previous studies demonstrated that CS impairs macrophages and host-protective T effector cells in controlling MTB infection. We now show that CS-exposed Tregs can also impair control of MTB in co-culture with macrophages and in a murine model.


Asunto(s)
Fumar Cigarrillos , Mycobacterium tuberculosis , Tuberculosis , Ratones , Humanos , Animales , Linfocitos T Reguladores , Nicotina , Tuberculosis/microbiología
2.
Tuberculosis (Edinb) ; 138: 102288, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470124

RESUMEN

The benzothiazole amide CRS0393 demonstrated excellent in vitro activity against nontuberculous mycobacteria (NTM), including M. abscessus isolates from cystic fibrosis (CF) patients, with minimum inhibitory concentrations (MICs) of ≤0.03-0.5 µg/mL. The essential transport protein MmpL3 was confirmed as the target via analysis of spontaneous resistant mutants and further biological profiling. In mouse pharmacokinetic studies, intratracheal instillation of a single dose of CRS0393 resulted in high concentrations of drug in epithelial lining fluid (ELF) and lung tissue, which remained above the M. abscessus MIC for at least 9 hours post-dose. This exposure resulted in a penetration ratio of 261 for ELF and 54 for lung tissue relative to plasma. CRS0393 showed good oral bioavailability, particularly when formulated in kolliphor oil, with a lung-to-plasma penetration ratio ranging from 0.5 to 4. CRS0393 demonstrated concentration-dependent reduction of intracellular M. abscessus in a THP-1 macrophage infection model. CRS0393 was well tolerated following intranasal administration (8 mg/kg) or oral dosing (25 mg/kg) once daily for 28 days in dexamethasone-treated C3HeB/FeJ mice. Efficacy against M. abscessus strain 103 was achieved via the intranasal route, while oral dosing will need further optimization. CRS0393 holds promise for development as a novel agent with broad antimycobacterial activity.


Asunto(s)
Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium tuberculosis , Ratones , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Micobacterias no Tuberculosas , Pulmón , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Pruebas de Sensibilidad Microbiana
3.
Immune Netw ; 22(3): e27, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35799709

RESUMEN

Little is known of the lung cellular immunophenotypes in patients with non-tuberculous mycobacterial lung disease (NTM-LD). Flow-cytometric analyses for the major myeloid and lymphoid cell subsets were performed in less- and more-diseased areas of surgically resected lungs from six patients with NTM-LD and two with Pseudomonas aeruginosa lung disease (PsA-LD). Lymphocytes, comprised mainly of NK cells, CD4+ and CD8+ T cells, and B cells, accounted for ~60% of all leukocytes, with greater prevalence of T and B cells in more-diseased areas. In contrast, fewer neutrophils were found with decreased number in more-diseased areas. Compared to NTM-LD, lung tissues from patients with PsA-LD demonstrated relatively lower numbers of T and B lymphocytes but similar numbers of NK cells. While this study demonstrated a large influx of lymphocytes into the lungs of patients with chronic NTM-LD, further analyses of their phenotypes are necessary to determine the significance of these findings.

5.
Sci Rep ; 12(1): 5207, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338216

RESUMEN

The cell surface serine protease Transmembrane Protease 2 (TMPRSS2) is required to cleave the spike protein of SARS-CoV-2 for viral entry into cells. We determined whether negatively-charged heparin enhanced TMPRSS2 inhibition by alpha-1-antitrypsin (AAT). TMPRSS2 activity was determined in HEK293T cells overexpressing TMPRSS2. We quantified infection of primary human airway epithelial cells (hAEc) with human coronavirus 229E (HCoV-229E) by immunostaining for the nucleocapsid protein and by the plaque assay. Detailed molecular modeling was undertaken with the heparin-TMPRSS2-AAT ternary complex. Enoxaparin enhanced AAT inhibition of both TMPRSS2 activity and infection of hAEc with HCoV-229E. Underlying these findings, detailed molecular modeling revealed that: (i) the reactive center loop of AAT adopts an inhibitory-competent conformation compared with the crystal structure of TMPRSS2 bound to an exogenous (nafamostat) or endogenous (HAI-2) TMPRSS2 inhibitor and (ii) negatively-charged heparin bridges adjacent electropositive patches at the TMPRSS2-AAT interface, neutralizing otherwise repulsive forces. In conclusion, enoxaparin enhances AAT inhibition of both TMPRSS2 and coronavirus infection. Such host-directed therapy is less likely to be affected by SARS-CoV-2 mutations. Furthermore, given the known anti-inflammatory activities of both AAT and heparin, this form of treatment may target both the virus and the excessive inflammatory consequences of severe COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Enoxaparina , Enoxaparina/farmacología , Células HEK293 , Humanos , SARS-CoV-2 , Serina Endopeptidasas
6.
Sci Transl Med ; 14(633): eabj3860, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196022

RESUMEN

A search for alternative Mycobacterium abscessus treatments led to our interest in the two-component regulator DosRS, which, in Mycobacterium tuberculosis, is required for the bacterium to establish a state of nonreplicating, drug-tolerant persistence in response to a variety of host stresses. We show here that the genetic disruption of dosRS impairs the adaptation of M. abscessus to hypoxia, resulting in decreased bacterial survival after oxygen depletion, reduced tolerance to a number of antibiotics in vitro and in vivo, and the inhibition of biofilm formation. We determined that three antimalarial drugs or drug candidates, artemisinin, OZ277, and OZ439, can target DosS-mediated hypoxic signaling in M. abscessus and recapitulate the phenotypic effects of genetically disrupting dosS. OZ439 displayed bactericidal activity comparable to standard-of-care antibiotics in chronically infected mice, in addition to potentiating the activity of antibiotics used in combination. The identification of antimalarial drugs as potent inhibitors and adjunct inhibitors of M. abscessus in vivo offers repurposing opportunities that could have an immediate impact in the clinic.


Asunto(s)
Antimaláricos , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/fisiología
7.
Antimicrob Agents Chemother ; 66(2): e0151021, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34930031

RESUMEN

Antibiotic therapy of infections caused by the emerging pathogen Mycobacterium abscessus is challenging due to the organism's inherent resistance to clinically available antimicrobials. The low bactericidal potency of currently available treatment regimens is of concern and testifies to the poor therapeutic outcomes for pulmonary M. abscessus infections. Mechanistically, we demonstrate here that the acetyltransferase Eis2 is responsible for the lack of bactericidal activity of amikacin, the standard aminoglycoside used in combination treatment. In contrast, the aminoglycoside apramycin, with a distinct structure, is not modified by any of the pathogen's innate aminoglycoside resistance mechanisms and is not affected by the multidrug resistance regulator WhiB7. As a consequence, apramycin uniquely shows potent bactericidal activity against M. abscessus. This favorable feature of apramycin is reflected in a mouse model of pulmonary M. abscessus infection, which demonstrates superior activity, compared with amikacin. These findings encourage the development of apramycin for the treatment of M. abscessus infections and suggest that M. abscessus eradication in pulmonary disease may be within therapeutic reach.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Nebramicina , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Nebramicina/análogos & derivados , Nebramicina/farmacología , Nebramicina/uso terapéutico
8.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34830423

RESUMEN

Twenty lupane type A-ring azepano-triterpenoids were synthesized from betulin and its related derivatives and their antitubercular activity against Mycobacterium tuberculosis, mono-resistant MTB strains, and nontuberculous strains Mycobacterium abscessus and Mycobacterium avium were investigated in the framework of AToMIc (Anti-mycobacterial Target or Mechanism Identification Contract) realized by the Division of Microbiology and Infectious Diseases, NIAID, National Institute of Health. Of all the tested triterpenoids, 17 compounds showed antitubercular activity and 6 compounds were highly active on the H37Rv wild strain (with MIC 0.5 µM for compound 7), out of which 4 derivatives also emerged as highly active compounds on the three mono-resistant MTB strains. Molecular docking corroborated with a machine learning drug-drug similarity algorithm revealed that azepano-triterpenoids have a rifampicin-like antitubercular activity, with compound 7 scoring the highest as a potential M. tuberculosis RNAP potential inhibitor. FIC testing demonstrated an additive effect of compound 7 when combined with rifampin, isoniazid and ethambutol. Most compounds were highly active against M. avium with compound 14 recording the same MIC value as the control rifampicin (0.0625 µM). The antitubercular ex vivo effectiveness of the tested compounds on THP-1 infected macrophages is correlated with their increased cell permeability. The tested triterpenoids also exhibit low cytotoxicity and do not induce antibacterial resistance in MTB strains.


Asunto(s)
Antituberculosos/química , Mycobacterium tuberculosis/efectos de los fármacos , Triterpenos/química , Tuberculosis/tratamiento farmacológico , Antibacterianos/química , Antibacterianos/farmacología , Antituberculosos/farmacología , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/genética , Diseño de Fármacos , Farmacorresistencia Bacteriana/genética , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Mycobacterium tuberculosis/patogenicidad , Rifampin/farmacología , Triterpenos/farmacología , Tuberculosis/genética , Tuberculosis/microbiología
9.
Front Microbiol ; 12: 706207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335541

RESUMEN

Chronic pulmonary infections caused by non-tuberculous mycobacteria of the Mycobacterium abscessus complex (MABSC) are emerging as a global health problem and pose a threat to susceptible individuals with structural lung disease such as cystic fibrosis. The molecular mechanisms underlying the pathogenicity and intrinsic resistance of MABSC to antibiotics remain largely unknown. The involvement of Msp-type porins in the virulence and biocide resistance of some rapidly growing non-tuberculous mycobacteria and the finding of deletions and rearrangements in the porin genes of serially collected MABSC isolates from cystic fibrosis patients prompted us to investigate the contribution of these major surface proteins to MABSC infection. Inactivation by allelic replacement of the each of the two Msp-type porin genes of M. abscessus subsp. massiliense CIP108297, mmpA and mmpB, led to a marked increase in the virulence and pathogenicity of both mutants in murine macrophages and infected mice. Neither of the mutants were found to be significantly more resistant to antibiotics. These results suggest that adaptation to the host environment rather than antibiotic pressure is the key driver of the emergence of porin mutants during infection.

10.
Sci Rep ; 11(1): 9040, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907221

RESUMEN

The nontuberculous mycobacteria (NTM) Mycobacterium avium is a clinically significant pathogen that can cause a wide range of maladies, including tuberculosis-like pulmonary disease. An immunocompromised host status, either genetically or acutely acquired, presents a large risk for progressive NTM infections. Due to this quietly emerging health threat, we evaluated the ability of a recombinant fusion protein ID91 combined with GLA-SE [glucopyranosyl lipid adjuvant, a toll like receptor 4 agonist formulated in an oil-in-water stable nano-emulsion] to confer protection in both C57BL/6 (wild type) and Beige (immunocompromised) mouse models. We optimized an aerosol challenge model using a clinical NTM isolate: M. avium 2-151 smt, observed bacterial growth kinetics, colony morphology, drug sensitivity and histopathology, characterized the influx of pulmonary immune cells, and confirmed the immunogenicity of ID91 in both mouse models. To determine prophylactic vaccine efficacy against this M. avium isolate, mice were immunized with either ID91 + GLA-SE or bacillus Calmette-Guérin (BCG). Immunocompromised Beige mice displayed a delayed influx of innate and adaptive immune cells resulting in a sustained and increased bacterial burden in the lungs and spleen compared to C57BL/6 mice. Importantly, both ID91 + GLA-SE and BCG vaccines significantly reduced pulmonary bacterial burden in both mouse strains. This work is a proof-of-concept study of subunit vaccine-induced protection against NTM.


Asunto(s)
Vacuna BCG/administración & dosificación , Modelos Animales de Enfermedad , Huésped Inmunocomprometido/inmunología , Mycobacterium avium/patogenicidad , Tuberculosis/prevención & control , Vacunas de Subunidad/administración & dosificación , Animales , Vacuna BCG/inmunología , Femenino , Ratones , Ratones Endogámicos C57BL , Mycobacterium avium/metabolismo , Tuberculosis/inmunología , Tuberculosis/microbiología , Vacunación , Vacunas de Subunidad/inmunología
11.
Science ; 372(6541)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33926925

RESUMEN

Although almost all mycobacterial species are saprophytic environmental organisms, a few, such as Mycobacterium tuberculosis, have evolved to cause transmissible human infection. By analyzing the recent emergence and spread of the environmental organism M. abscessus through the global cystic fibrosis population, we have defined key, generalizable steps involved in the pathogenic evolution of mycobacteria. We show that epigenetic modifiers, acquired through horizontal gene transfer, cause saltational increases in the pathogenic potential of specific environmental clones. Allopatric parallel evolution during chronic lung infection then promotes rapid increases in virulence through mutations in a discrete gene network; these mutations enhance growth within macrophages but impair fomite survival. As a consequence, we observe constrained pathogenic evolution while person-to-person transmission remains indirect, but postulate accelerated pathogenic adaptation once direct transmission is possible, as observed for M. tuberculosis Our findings indicate how key interventions, such as early treatment and cross-infection control, might restrict the spread of existing mycobacterial pathogens and prevent new, emergent ones.


Asunto(s)
Enfermedades Transmisibles Emergentes/microbiología , Evolución Molecular , Aptitud Genética , Pulmón/microbiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/genética , Mycobacterium abscessus/patogenicidad , Neumonía Bacteriana/microbiología , Enfermedades Transmisibles Emergentes/transmisión , Conjuntos de Datos como Asunto , Epigénesis Genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Humanos , Mutación , Infecciones por Mycobacterium no Tuberculosas/transmisión , Neumonía Bacteriana/transmisión , Virulencia/genética
12.
Immunol Rev ; 301(1): 48-61, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713043

RESUMEN

Immunity against different Mycobacteria species targeting the lung requires distinctly different pulmonary immune responses for bacterial clearance. Many parameters of acquired and regulatory immune responses differ quantitatively and qualitatively from immunity during infection with Mycobacteria species. Nontuberculosis Mycobacteria species (NTM) Mycobacterium avium- (M avium), Mycobacterium abscessus-(M abscessus), and the Mycobacteria species Mycobacterium tuberculosis-(Mtb). Herein, we discuss the potential implications of acquired and regulatory immune responses in the context of animal and human studies, as well as future directions for efforts to treat Mycobacteria diseases.


Asunto(s)
Mycobacterium abscessus , Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Mycobacterium avium
13.
Med Hypotheses ; 146: 110394, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33239231

RESUMEN

No definitive treatment for COVID-19 exists although promising results have been reported with remdesivir and glucocorticoids. Short of a truly effective preventive or curative vaccine against SARS-CoV-2, it is becoming increasingly clear that multiple pathophysiologic processes seen with COVID-19 as well as SARS-CoV-2 itself should be targeted. Because alpha-1-antitrypsin (AAT) embraces a panoply of biologic activities that may antagonize several pathophysiologic mechanisms induced by SARS-CoV-2, we hypothesize that this naturally occurring molecule is a promising agent to ameliorate COVID-19. We posit at least seven different mechanisms by which AAT may alleviate COVID-19. First, AAT is a serine protease inhibitor (SERPIN) shown to inhibit TMPRSS-2, the host serine protease that cleaves the spike protein of SARS-CoV-2, a necessary preparatory step for the virus to bind its cell surface receptor ACE2 to gain intracellular entry. Second, AAT has anti-viral activity against other RNA viruses HIV and influenza as well as induces autophagy, a known host effector mechanism against MERS-CoV, a related coronavirus that causes the Middle East Respiratory Syndrome. Third, AAT has potent anti-inflammatory properties, in part through inhibiting both nuclear factor-kappa B (NFκB) activation and ADAM17 (also known as tumor necrosis factor-alpha converting enzyme), and thus may dampen the hyper-inflammatory response of COVID-19. Fourth, AAT inhibits neutrophil elastase, a serine protease that helps recruit potentially injurious neutrophils and implicated in acute lung injury. AAT inhibition of ADAM17 also prevents shedding of ACE2 and hence may preserve ACE2 inhibition of bradykinin, reducing the ability of bradykinin to cause a capillary leak in COVID-19. Fifth, AAT inhibits thrombin, and venous thromboembolism and in situ microthrombi and macrothrombi are increasingly implicated in COVID-19. Sixth, AAT inhibition of elastase can antagonize the formation of neutrophil extracellular traps (NETs), a complex extracellular structure comprised of neutrophil-derived DNA, histones, and proteases, and implicated in the immunothrombosis of COVID-19; indeed, AAT has been shown to change the shape and adherence of non-COVID-19-related NETs. Seventh, AAT inhibition of endothelial cell apoptosis may limit the endothelial injury linked to severe COVID-19-associated acute lung injury, multi-organ dysfunction, and pre-eclampsia-like syndrome seen in gravid women. Furthermore, because both NETs formation and the presence of anti-phospholipid antibodies are increased in both COVID-19 and non-COVID pre-eclampsia, it suggests a similar vascular pathogenesis in both disorders. As a final point, AAT has an excellent safety profile when administered to patients with AAT deficiency and is dosed intravenously once weekly but also comes in an inhaled preparation. Thus, AAT is an appealing drug candidate to treat COVID-19 and should be studied.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Modelos Biológicos , alfa 1-Antitripsina/uso terapéutico , Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Antitrombinas/uso terapéutico , Antivirales/uso terapéutico , Apoptosis/efectos de los fármacos , COVID-19/fisiopatología , Trampas Extracelulares/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/fisiología , Humanos , Elastasa de Leucocito/antagonistas & inhibidores , Pandemias , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Serina Endopeptidasas/efectos de los fármacos , Serina Endopeptidasas/fisiología , Internalización del Virus/efectos de los fármacos , alfa 1-Antitripsina/administración & dosificación
14.
Vaccines (Basel) ; 8(4)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207695

RESUMEN

The global tuberculosis (TB) epidemic caused by the bacterial pathogen Mycobacterium tuberculosis (M.tb) continues unabated. The Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination is widely utilized worldwide to protect against infection with M.tb. BCG vaccine protection against TB has had widely varying results for reasons that are not well understood. BCG vaccine interference by non-tuberculosis (NTM) mycobacterial species has been implicated as the potential cause of reduced BCG vaccine efficacy against M.tb. Ongoing efforts to develop new vaccines for TB requires a thorough understanding of the effect of NTM exposure on BCG vaccine efficacy, which may ultimately be a critical determinant of success. We reviewed the conflicting reports on whether NTM interferes with the BCG vaccine, potential explanations to help resolve the controversy, and strategies for developing better animal models. Further studies are needed to longitudinally track the effects of NTM exposure on BCG vaccine-induced host-protective anti-TB immunity.

15.
J Bacteriol ; 202(22)2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900827

RESUMEN

Phenotypic testing for drug susceptibility of Mycobacterium tuberculosis is critical to basic research and managing the evolving problem of antimicrobial resistance in tuberculosis management, but it remains a specialized technique to which access is severely limited. Here, we report on the development and validation of an improved phage-mediated detection system for M. tuberculosis We incorporated a nanoluciferase (Nluc) reporter gene cassette into the TM4 mycobacteriophage genome to create phage TM4-nluc. We assessed the performance of this reporter phage in the context of cellular limit of detection and drug susceptibility testing using multiple biosafety level 2 drug-sensitive and -resistant auxotrophs as well as virulent M. tuberculosis strains. For both limit of detection and drug susceptibility testing, we developed a standardized method consisting of a 96-hour cell preculture followed by a 72-hour experimental window for M. tuberculosis detection with or without antibiotic exposure. The cellular limit of detection of M. tuberculosis in a 96-well plate batch culture was ≤102 CFU. Consistent with other phenotypic methods for drug susceptibility testing, we found TM4-nluc to be compatible with antibiotics representing multiple classes and mechanisms of action, including inhibition of core central dogma functions, cell wall homeostasis, metabolic inhibitors, compounds currently in clinical trials (SQ109 and Q203), and susceptibility testing for bedaquiline, pretomanid, and linezolid (components of the BPaL regimen for the treatment of multi- and extensively drug-resistant tuberculosis). Using the same method, we accurately identified rifampin-resistant and multidrug-resistant M. tuberculosis strains.IMPORTANCEMycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana/métodos , Micobacteriófagos/genética , Mycobacterium tuberculosis/efectos de los fármacos , Rifampin/farmacología , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/virología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Pulmonar/microbiología
16.
ACS Infect Dis ; 6(8): 2143-2154, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32551551

RESUMEN

Understanding the physiological processes underlying the ability of Mycobacterium abscessus to become a chronic pathogen of the cystic fibrosis (CF) lung is important to the development of prophylactic and therapeutic strategies to better control and treat pulmonary infections caused by these bacteria. Gene expression profiling of a diversity of M. abscessus complex isolates points to amino acids being significant sources of carbon and energy for M. abscessus in both CF sputum and synthetic CF medium and to the bacterium undergoing an important metabolic reprogramming in order to adapt to this particular nutritional environment. Cell envelope analyses conducted on the same representative isolates further revealed unexpected structural alterations in major cell surface glycolipids known as the glycopeptidolipids (GPLs). Besides showing an increase in triglycosylated forms of these lipids, CF sputum- and synthetic CF medium-grown isolates presented as yet unknown forms of GPLs representing as much as 10% to 20% of the total GPL content of the cells, in which the classical amino alcohol located at the carboxy terminal of the peptide, alaninol, is replaced with the branched-chain amino alcohol leucinol. Importantly, both these lipid changes were exacerbated by the presence of mucin in the culture medium. Collectively, our results reveal potential new drug targets against M. abscessus in the CF airway and point to mucin as an important host signal modulating the cell surface composition of this pathogen.


Asunto(s)
Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Glucolípidos , Humanos , Mycobacterium abscessus/genética , Esputo
17.
Curr Protoc Immunol ; 129(1): e98, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32497414

RESUMEN

This manuscript describes the infection of mice and guinea pigs with mycobacteria via various routes, as well as necropsy methods for the determination of mycobacterial loads within target organs. Additionally, methods for cultivating mycobacteria and preparing stocks are described. The protocols outlined are primarily used for M. tuberculosis, but can also be used for the study of other non-tuberculosis mycobacterial species. A wide variety of animal models have been used to test new vaccines, drugs, and the impact of cigarette exposure. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Aerosol infection of mice with mycobacteria Basic Protocol 2: Aerosol infection of guinea pig with mycobacteria using a Madison chamber Alternate Protocol 1: Cigarette exposure prior to infection of mice with mycobacteria Alternate Protocol 2: Intravenous infection of mice with mycobacteria Basic Protocol 3: Necropsy methods for animals experimentally infected with mycobacteria Basic Protocol 4: Following the course of infection Basic Protocol 5: Measuring the animal immune response to infection Support Protocol: Cultivation of mycobacteria for use in animal experiments.


Asunto(s)
Modelos Animales de Enfermedad , Inmunoensayo/métodos , Mycobacterium tuberculosis/fisiología , Tuberculosis/inmunología , Animales , Cobayas , Humanos , Ratones
18.
Artículo en Inglés | MEDLINE | ID: mdl-32041716

RESUMEN

New drugs or therapeutic combinations are urgently needed against Mycobacterium abscessus Previously, we demonstrated the potent activity of indole-2-carboxamides 6 and 12 against M. abscessus We show here that these compounds act synergistically with imipenem and cefoxitin in vitro and increase the bactericidal activity of the ß-lactams against M. abscessus In addition, compound 12 also displays synergism with imipenem and cefoxitin within infected macrophages. The clinical potential of these new drug combinations requires further evaluation.


Asunto(s)
Antibacterianos/farmacología , Indoles/farmacología , Mycobacterium abscessus/efectos de los fármacos , beta-Lactamas/farmacología , Cefoxitina/farmacología , Recuento de Colonia Microbiana , Sinergismo Farmacológico , Humanos , Imipenem/farmacología , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología
19.
ACS Infect Dis ; 6(2): 291-301, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31762254

RESUMEN

Mycobacterium tuberculosis lipoarabinomannan (LAM) is a biomarker for active tuberculosis (TB) disease. The presence of LAM in the urine of TB patients, whether HIV positive or negative, has been validated by a gas chromatography/mass spectral method with good specificity (84%) and sensitivity (99%). However, point-of-care (POC) methods to detect TB LAM in urine using immunoassays have poor sensitivity and are limited to only HIV coinfected TB diagnosis. We hypothesized that these disappointing results with the POC methods may be due to the antibodies used in the immunoassays as there could be structural differences between LAM in vivo and LAM in vitro. To address this issue, we infected C3HeB/FeJ mice with M.tb W. Beijing SA161 and purified LAM from the lung. Analysis of these sources of LAM using a panel of existing mAbs revealed differences in epitope patterns. Conventionally, the non-reducing termini of LAM are identified by their release with endoarabinanase. These epitopes correspond to linear tetra-(Ara4), branched hexa-(Ara6) arabinofuranosides, and their mannose-capped versions. We discovered two distinct epitopes. In the first case, it was found that the non-reducing termini of LAM from M.tb strain SA161 are highly succinylated, especially when the LAM was isolated from the mouse lungs. In the second case, it was found that Cellulomonas endoarabinanase digestion of LAM from both SA161 and LAM from a TB+ HIV- patient's urine yielded epitopes based on 5 arabinoses as major components and a profound lack of Ara6. The epitopes based on 5 arabinoses from M.tb SA161 and from the LAM in human urine must result from underlying structural and thus epitope differences. These results suggest approaches to develop specific antibodies for POC tests for LAM in the urine of suspected TB patients.


Asunto(s)
Epítopos/inmunología , Lipopolisacáridos/química , Pulmón/microbiología , Tuberculosis/microbiología , Tuberculosis/orina , Animales , Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos , Infecciones por VIH/microbiología , Humanos , Ratones , Mycobacterium tuberculosis/química , Esputo/microbiología
20.
J Cyst Fibros ; 18(5): 714-720, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31138497

RESUMEN

BACKGROUND: Nontuberculous mycobacteria are recognized as a concern for cystic fibrosis (CF) patients due to increasing disease prevalence and the potential for detrimental effects on pulmonary function and mortality. Current standard of care involves prolonged systemic antibiotics, which often leads to severe side effects and poor treatment outcomes. In this study, we investigated the tolerability and efficacy of a novel inhaled therapeutic in various mouse models of NTM disease. METHODS: We developed clofazimine inhalation suspension (CIS), a novel formulation of clofazimine developed for inhaled administration. To determine the efficacy, minimum inhibitory concentrations were evaluated in vitro, and tolerability of CIS was determined in naïve mouse models over various durations. After establishing tolerability, CIS efficacy was tested in in vivo infection models of both Mycobacterium avium and M. abscessus. Lung and plasma clofazimine levels after chronic treatments were evaluated. RESULTS: Clofazimine inhalation suspension demonstrated antimycobacterial activity in vitro, with MIC values between 0.125 and 2 µg/ml for M. avium complex and M. abscessus. Administration into naïve mice showed that CIS was well tolerated at doses up to 28 mg/kg over 28 consecutive treatments. In vivo, CIS was shown to significantly improve bacterial elimination from the lungs of both acute and chronic NTM-infected mouse models compared to negative controls and oral clofazimine administration. Clofazimine concentrations in lung tissue were approximately four times higher than the concentrations achieved by oral dosing. CONCLUSION: Clofazimine inhalation suspension is a well tolerated and effective novel therapeutic candidate for the treatment of NTM infections in mouse models.


Asunto(s)
Antibacterianos , Clofazimina , Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Micobacterias no Tuberculosas/efectos de los fármacos , Administración por Inhalación , Aerosoles , Animales , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Antibacterianos/farmacocinética , Disponibilidad Biológica , Clofazimina/administración & dosificación , Clofazimina/efectos adversos , Clofazimina/farmacocinética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Fibrosis Quística/fisiopatología , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Distribución Tisular , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA