Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37999342

RESUMEN

In the last twenty-five years, extensive work has been done on ion exchange membrane bioreactors (IEMB) combining Donnan dialysis and anaerobic reduction to remove trace oxyanions (e.g., perchlorate, nitrate, chlorate, arsenate) from contaminated water sources. Most studies used Donnan dialysis contactors with high recirculation rates on the feed side, so under continuous operation, the effective concentration on the feed side of the membrane is the same as the exit concentration (CSTR mode). We have built, characterized, and modelled a plug flow Donnan dialysis contactor (PFR) that maximizes concentration on the feed side and operated it on feed solutions spiked with perchlorate and nitrate ion using ACS and PCA-100 anion exchange membranes. At identical feed inlet concentrations with the ACS membrane, membrane area loading rates are three-fold greater, and fluxes are more than double in the PFR contactor than in the CSTR contactor. A model based on the nonlinear adsorption of perchlorate in ACS membrane correctly predicted the trace ion concentration as a function of space-time in experiments with ACS. For PCA membrane, a linear flux dependence on feed concentration correctly described trace ion feed concentration as a function of space-time. Anion permeability for PCA-100 was high enough that the overall mass transfer was affected by the film boundary layer resistance. These results provide a basis for efficiently scaling up Donnan dialysis contactors and incorporating them in full-scale IEMB setups.

2.
Membranes (Basel) ; 11(6)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070912

RESUMEN

We present operando small-angle neutron scattering (SANS) experiments on silica fouling at two reverse osmose (RO) membranes under almost realistic conditions of practiced RO desalination technique. To its realization, two cells were designed for pressure fields and tangential feed cross-flows up to 50 bar and 36 L/h, one cell equipped with the membrane and the other one as an empty cell to measure the feed solution in parallel far from the membrane. We studied several aqueous silica dispersions combining the parameters of colloidal radius, volume fraction, and ionic strength. A relevant result is the observation of Bragg diffraction as part of the SANS scattering pattern, representing a crystalline cake layer of simple cubic lattice structure. Other relevant parameters are silica colloidal size and volume fraction far from and above the membrane, as well as the lattice parameter of the silica cake layer, its volume fraction, thickness, and porosity in comparison with the corresponding permeate flux. The experiments show that the formation of cake layer depends to a large extent on colloidal size, ionic strength and cross-flow. Cake layer formation proved to be a reversible process, which could be dissolved at larger cross-flow. Only in one case we observed an irreversible cake layer formation showing the characteristics of an unstable phase transition. We likewise observed enhanced silica concentration and/or cake formation above the membrane, giving indication of a first order liquid-solid phase transformation.

3.
Membranes (Basel) ; 10(3)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197524

RESUMEN

The morphology of thin film composite (TFC) membranes used in reverse osmosis (RO) and nanofiltration (NF) water treatment was explored with small-angle neutron scattering (SANS) and positron-annihilation lifetime spectroscopy (PALS). The combination of both methods allowed the characterization of the bulk porous structure from a few Å to µm in radius. PALS shows pores of 4.5 Å average radius in a surface layer of about 4 m thickness, which become 40% smaller at the free surface of the membranes. This observation may correlate with the glass state of the involved polymer. Pores of similar size appear in SANS as closely packed pores of 6 Å radius distributed with an average distance of 30 Å. The main effort of SANS was the characterization of the morphology of the porous polysulfone support layer as well as the fibers of the nonwoven fabric layer. Contrast variation using the media H2O/D2O and supercritical CO2 and CD4 identified the polymers of the support layers as well as internal heterogeneities.

4.
Environ Sci Technol ; 53(9): 5202-5211, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30955329

RESUMEN

Silica scaling of membranes used in reverse osmosis desalination processes is a severe problem, especially during the desalination of brackish groundwater due to high silica concentrations. This problem limits the water supply in inland arid and semiarid regions. Here, we investigated the influence of surface-exposed organic functional groups on silica precipitation and scaling. A test solution simulating the mineral content of brackish groundwater desalination brine at 75% recovery was used. The mass and chemical composition of the precipitated silica was monitored using a quartz crystal microbalance, X-ray photoelectron spectroscopy, and infrared spectroscopy, showing that surfaces with positively charged groups induced rapid silica precipitation, and the rate of silica precipitation followed the order -NH2 ∼ -N+(CH3)3 > -NH2/-COOH > -H2PO3 ∼ -OH > -COOH > -CH3. Force vs distance AFM measurements showed that the adhesion energy between a silica colloid glued to AFM cantilever and the studied surfaces increased as the surface charge changed from negative to positive. Thus, for the first time direct measurements of molecular forces and specific chemical groups that govern silica scaling during brackish water desalination is reported here. The influence of the different functional groups and the effect of the surface charge on silica precipitation that were found here can be used to design membranes that resist silica scaling in membrane-based desalination processes.


Asunto(s)
Dióxido de Silicio , Purificación del Agua , Filtración , Ósmosis , Aguas Salinas
5.
Water Res ; 128: 217-225, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29107906

RESUMEN

Desalinated domestic wastewater is an indispensable water resource in arid regions; however, its recovery can be limited by calcium phosphate scaling and fouling of the membrane. Here we investigated calcium phosphate mineralization on oligoamide surfaces that mimics reverse osmosis (RO) and nanofiltration (NF) membrane surfaces. We used a solution that simulates desalination of secondary treated domestic wastewater effluents for calcium phosphate mineralization experiments with oligoamide-coated gold surfaces. Attenuated total reflection-Fourier transform infrared spectroscopy and energy dispersive spectrometry showed that calcium phosphate and carbonate precipitated on RO mimetic surfaces. The rate of precipitation on oligoamide sensors was monitored by a quartz crystal microbalance, showing that scaling was more intense on the RO than the NF mimetic surface and that excessive carboxyl functional groups on both surfaces promoted scaling. Filtration experiments of similar solutions with commercial membranes showed that scaling was more intense on the RO membranes than on the NF membranes, which supported the results obtained with the oligoamide model surfaces. The results of this study can be implemented in developing RO and NF membranes to prevent calcium phosphate scaling and consequently lower water-treatment costs of domestic wastewater treatment.


Asunto(s)
Fosfatos de Calcio/química , Filtración/instrumentación , Membranas Artificiales , Purificación del Agua/instrumentación , Precipitación Química , Filtración/métodos , Ósmosis , Tecnicas de Microbalanza del Cristal de Cuarzo , Salinidad , Aguas Residuales/química , Purificación del Agua/métodos
6.
Environ Sci Technol ; 51(17): 10022-10030, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28741939

RESUMEN

Biofouling commonly occurs on carbonaceous capacitive deionization electrodes in the process of treating natural waters. Although previous work reported the effect of electric fields on bacterial mortality for a variety of medical and engineered applications, the effect of electrode surface properties and the magnitude and polarity of applied electric fields on biofilm development has not been comprehensively investigated. This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA) and a carbon aerogel (CA) in the presence and the absence of an electric field. The experiments were conducted using a two-electrode flow cell with a voltage window of ±0.9 V. The CA was less susceptible to biofilm formation compared to the PA due to its lower surface roughness, lower hydrophobicity, and significant antimicrobial properties. For both positive and negative applied potentials, we observed an inverse relationship between biofilm formation and the magnitude of the applied potential. The effect is particularly strong for the CA electrodes and may be a result of cumulative effects between material toxicity and the stress experienced by cells at high applied potentials. Under the applied potentials for both electrodes, high production of endogenous reactive oxygen species (ROS) was indicative of bacterial stress. For both electrodes, the elevated specific ROS activity was lowest for the open circuit potential condition, elevated when cathodically and anodically polarized, and highest for the ±0.9 V cases. These high applied potentials are believed to affect the redox potential across the cell membrane and disrupt redox homeostasis, thereby inhibiting bacterial growth.


Asunto(s)
Incrustaciones Biológicas , Electrodos , Carbono , Electricidad , Grafito , Purificación del Agua
7.
ACS Appl Mater Interfaces ; 9(21): 18238-18247, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28520397

RESUMEN

Prevention of fouling on surfaces is a major challenge that broadly impacts society. Water treatment technologies, hospital infrastructure, and seawater pipes exemplify surfaces that are susceptible to biofouling. Here we show that laser-induced graphene (LIG) printed on a polyimide film by irradiation with a CO2 infrared laser under ambient conditions is extremely biofilm resistant while as an electrode is strongly antibacterial. We investigated the antibacterial activity of the LIG surface using LIG powder in suspension or deposited on surfaces, and its activity depended on the particle size and oxygen content. Remarkably, the antimicrobial effects of the surface were greatly amplified when voltages in the range of 1.1-2.5 were applied in an electrode configuration in bacterial solutions. The bactericidal mechanism was directly observed using microscopy and fast photography, which showed a rapid bacterial movement toward the LIG surface and subsequent bacterial killing. In addition, electrochemical generation of H2O2 was observed; however, the bacterial killing mechanism depended strongly on the physical and electrical contact of the bacterial cells to the surfaces. The anti-biofilm activity of the LIG surfaces and electrodes could lead to efficient protection of surfaces that are susceptible to biofouling in environmental applications by incorporating LIG onto the surfaces.


Asunto(s)
Grafito/química , Antiinfecciosos , Incrustaciones Biológicas , Electrodos , Peróxido de Hidrógeno
8.
Colloids Surf B Biointerfaces ; 143: 233-242, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27015648

RESUMEN

Biofouling and scaling on reverse osmosis (RO) or nanofiltration (NF) membranes during desalination of secondary and tertiary effluents pose an obstacle that limits the reuse of wastewater. In this study we explored the mineral scaling induced by biopolymers originated from bacterial biofilms: bovine serum albumin (BSA), fibrinogen, lysozyme and alginic acid, as well as an extracts of extracellular polymeric substances (EPS) from bio-fouled RO membranes from wastewater treatment facility. Mineralization studies were performed on Langmuir films of the biopolymers deposited at the interface of a solution simulating RO desalination of secondary-treated wastewater effluents. All studied biopolymers and EPS induced heterogeneous mineralization of mainly calcium phosphate. Using IR spectroscopy coupled with systematic quantitative analysis of the surface pressure versus molecular-area isotherms, we determined the mineralization tendencies of the biopolymers to be in the order of: fibrinogen>lysozyme>BSA>alginic acid. The biopolymers and EPS studied here were found to be accelerators of calcium-phosphate mineralization. This study demonstrates the utilization of Langmuir surface-pressure area isotherms and a model solution in quantitatively assessing the mineralization tendencies of various molecular components of EPS in context of membrane-based water treatment systems.


Asunto(s)
Biopolímeros/química , Fosfatos de Calcio/química , Membranas Artificiales , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Alginatos/química , Animales , Bovinos , Fibrinógeno/química , Filtración/instrumentación , Filtración/métodos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Muramidasa/química , Albúmina Sérica Bovina/química , Espectrofotometría Infrarroja , Propiedades de Superficie , Termodinámica , Eliminación de Residuos Líquidos/instrumentación , Purificación del Agua/instrumentación
9.
Biotechnol Bioeng ; 113(9): 1881-91, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26913813

RESUMEN

We investigated effective simultaneous removal of high loads of nitrate and perchlorate from synthetic groundwater using an ion exchange membrane bioreactor (IEMB). The aim of this research was to characterize both transport aspects and biodegradation mechanisms involved in the treatment process of high loads of the two anions. Biodegradation process was proven to be efficient with over 99% efficiency of both perchlorate and nitrate, regardless of their load. The maximum biodegradation rates were 18.3 (mmol m(-2) h(-1) ) and 5.5 (mmol m(-2) h(-1) ) for nitrate and perchlorate, respectively. The presence of a biofilm on the bio-side of the membrane only slightly increased the nitrate and perchlorate transmembrane flux as compared to the measured flux during a Donnan dialysis experiment where there is no biodegradation of perchlorate and nitrate in the bio-compartment. The nitrate flux in presence of a biofilm was 18.3 (±1.9) (mmole m(-2) h(-1) ), while without the biofilm, the flux was 16.9 (±1.5) (mmole m(-2) h(-1) ) for the same feed inlet nitrate concentration of 4 mM. The perchlorate transmembrane flux increased similarly by an average of 5%. Samples of membrane biofilm and suspended bacteria from the bio-reactor were analyzed for diversity and abundance of the perchlorate and nitrate reducing bacteria. Klebsiella oxytoca, known as a glycerol fermenter, accounted for 70% of the suspended bacteria. In contrast, perchlorate and nitrate reducing bacteria predominated in the biofilm present on the membrane. These results are consistent with our proposed two stage biodegradation mechanism where glycerol is first fermented in the suspended phase of the bio-reactor and the fermentation products drive perchlorate and nitrate bio-reduction in the biofilm attached to the membrane. These results suggest that the niche exclusion of microbial populations in between the reactor and membrane is controlled by the fluxes of the electron donors and acceptors. Such a mechanism has important implications for controlling the bio-reduction reaction in the IEMB when using glycerol as a carbon source and allowing treating a complex contamination of high concentrations of perchlorate and nitrating in groundwater and successfully biodegrading them to non-hazardous components. Biotechnol. Bioeng. 2016;113: 1881-1891. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Reactores Biológicos/microbiología , Membranas Artificiales , Nitratos/metabolismo , Percloratos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Bacterias/metabolismo , Biodegradación Ambiental , Biopelículas , Diseño de Equipo , Glicerol , Intercambio Iónico , Nitratos/análisis , Percloratos/análisis , Contaminantes Químicos del Agua/análisis
10.
Environ Sci Technol ; 50(4): 1955-63, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26810309

RESUMEN

Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface. In this research, we studied the potential use of saline groundwater of the coastal aquifer as feedwater for desalination in comparison to seawater using fieldwork and laboratory approaches. The chemistry, microbiology and physical properties of saline groundwater were characterized and compared with seawater. Additionally, reverse osmosis desalination experiments in a cross-flow system were performed, evaluating the permeate flux, salt rejection and fouling propensities of the different water types. Our results indicated that saline groundwater was significantly favored over seawater as a feed source in terms of chemical composition, microorganism content, silt density, and fouling potential, and exhibited better desalination performance with less flux decline. Saline groundwater may be a better water source for desalination by RO due to lower fouling potential, and reduced pretreatment costs.


Asunto(s)
Agua Potable , Agua Subterránea/química , Salinidad , Cloruro de Sodio/química , Purificación del Agua/métodos , Ósmosis , Agua de Mar/química
11.
J Colloid Interface Sci ; 460: 321-8, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26348658

RESUMEN

The objective of this work is to investigate the rate, extent, and structure of amphoteric proteins with charged solid surfaces over a range of applied potentials and surface charges. We use Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring (E-QCM-D) to investigate the adsorption of amphoteric Bovine Serum Albumin (BSA) to a gold electrode while systematically varying the surface charge on the adsorbate and adsorbent by manipulating pH and applied potential, respectively. We also perform cyclic voltammetry-E-QCM-D on an adsorbed layer of BSA to elucidate conformational changes in response to varied applied potentials. We confirm previous results demonstrating that increasing magnitude of applied potential on the gold electrode is positively correlated with increasing mass adsorption when the protein and the surface are oppositely charged. On the other hand, we find that the rate of BSA adsorption is not governed by simple electrostatics, but instead depends on solution pH, an observation not well documented in the literature. Cyclic voltammetry with simultaneous E-QCM-D measurements suggest that BSA protein undergoes a conformational change as the surface potential varies.


Asunto(s)
Oro/química , Albúmina Sérica Bovina/química , Adsorción , Animales , Bovinos , Coloides/química , Electroquímica , Electrodos , Concentración de Iones de Hidrógeno , Proteínas/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Electricidad Estática , Propiedades de Superficie
12.
J Hazard Mater ; 264: 552-9, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24238806

RESUMEN

Perchlorate contamination of groundwater is a worldwide concern. The most cost efficient treatment for high concentrations is biological treatment. In order to improve and increase the acceptance of this treatment, there is a need to reduce the contact between micro organisms in the treatment unit and the final effluent. An ion exchange membrane bioreactor (IEMB), in which treated water is separated from the bioreactor, was suggested for this purpose. In this study, the IEMB's performance was studied at a concentration as high as 250mgL(-1) that were never studied before. In the bioreactor, glycerol was used as a low cost and nontoxic carbon and energy source for the reduction of perchlorate to chloride. We found that high perchlorate concentrations in the feed rendered the anion exchange membrane significantly less permeable to perchlorate. However, the presence of bacteria in the bio-compartment significantly increased the flux through the membrane by more than 25% in comparison to pure Donnan dialysis. In addition, the results suggested minimal secondary contamination (<3mgCL(-1)) of the treated water with the optimum feed of carbon substrate. Our results show that IEMB can efficiently treat groundwater contaminated with perchlorate as high as 250mgL(-1).


Asunto(s)
Reactores Biológicos , Percloratos/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua , Glicerol , Intercambio Iónico , Membranas Artificiales
13.
Langmuir ; 29(25): 7607-17, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23701483

RESUMEN

Calcium phosphate scale formation on reverse osmosis (RO) membranes is one of the main limitations on cost-effective desalination of domestic wastewater worldwide. It has been shown that organic agents affect mineralization. In this study, we explored mineralization in the presence of two biofilm-relevant organic compounds, the proteins bovine serum albumin (BSA) and lysozyme, in a simulated secondary effluent (SSE) solution using small-angle neutron scattering (SANS), and applied the results to analyses of mineral precipitation in RO desalination of secondary effluents of wastewater. The two proteins are prominent members of bacterial extracellular polymeric substances (EPSs), forming biofilms that are frequently associated with RO-membrane fouling during wastewater desalination. Laboratory experiments showed that both proteins in SSE solution are involved in complex mineralization processes. Only small portions of both protein fractions are involved in mineralization processes, whereas most of the protein fractions remain as monomers in solution. Contrast variation showed that composite particles of mineral and protein are formed instantaneously to a radius of gyration of about 300 Å, coexisting with particles of about µm size. After about one day, these large particles start to grow again at the expense of the 300 Å particles. The volume fraction of the 300 Å particles is of the order of 2 × 10(-4), which is too large to represent calcium phosphate such as hydroxyapatite as the only mineral present. Considering the data of mineral volume fraction obtained here as well as the solubility product of possible mineral polymorphs in the SSE solution, we suggest the formation of protein-mineral particles of hydroxyapatite and calcium carbonate during scale formation.


Asunto(s)
Minerales/química , Dispersión del Ángulo Pequeño , Eliminación de Residuos Líquidos/métodos , Animales , Carbonato de Calcio/química , Fosfatos de Calcio/química , Bovinos , Durapatita/química , Muramidasa/química , Albúmina Sérica Bovina/química
14.
Water Res ; 47(10): 3389-98, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23615335

RESUMEN

Antiscalants are surface active polyelectrolyte compounds commonly used in reverse osmosis (RO) desalination processes to avoid membrane scaling. In spite of the significant roles of antiscalants in preventing membrane scaling, they are prone to enhance biofilm growth on RO membranes by either altering membrane surface properties or by serving as nutritional source for microorganisms. In this study, the contribution of antiscalants to membrane biofouling in seawater desalination was investigated. The effects of two commonly used antiscalants, polyphosphonate- and polyacrylate-based, were tested. The effects of RO membrane (DOW-Filmtec SW30 HRLE-400) exposure to antiscalants on its physico-chemical properties were studied, including the consequent effects on initial deposition and growth of the sessile microorganisms on the RO membrane surface. The effects of antiscalants on membrane physico-chemical properties were investigated by filtration of seawater supplemented with the antiscalants through flat-sheet RO membrane and changes in surface zeta potential and hydrophobicity were delineated. Adsorption of antiscalants to polyamide surfaces simulating RO membrane's polyamide layer and their effects on the consequent bacterial adhesion was tested using a quartz crystal microbalance with dissipation monitoring technology (QCM-D) and direct fluorescent microscopy. A significant increase in biofilm formation rate on RO membranes surface was observed in the presence of both types of antiscalants. Polyacrylate-based antiscalant was shown to enhance initial cell attachment as observed with the QCM-D and a parallel plate flow cell, due to rendering the polyamide surface more hydrophobic. Polyphosphonate-based antiscalants also increased biofilm formation rate, most likely by serving as an additional source of phosphorous to the seawater microbial population. A thicker biofilm layer was formed on the RO membrane when the polyacrylate-based antiscalant was used. Following these results, a wise selection of antiscalants for scaling control should take into account their contribution to membrane biofouling propensity.


Asunto(s)
Incrustaciones Biológicas , Electrólitos/química , Membranas Artificiales , Agua de Mar/microbiología , Purificación del Agua/métodos , Adsorción , Biopelículas/crecimiento & desarrollo , Filtración/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Nylons , Agua de Mar/química , Propiedades de Superficie , Purificación del Agua/instrumentación
15.
Biofouling ; 27(7): 787-98, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21797737

RESUMEN

Among various functions, extracellular polymeric substances (EPS) provide microbial biofilms with mechanical stability and affect initial cell attachment, the first stage in the biofilm formation process. The role of alginate, an abundant polysaccharide in Pseudomonas aeruginosa biofilms, in the viscoelastic properties and adhesion kinetics of EPS was analyzed using a quartz crystal microbalance with dissipation (QCM-D) monitoring technology. EPS was extracted from two P. aeruginosa biofilms, a wild type strain, PAO1, and a mucoid strain, PAOmucA22 that over-expresses alginate production. The higher alginate content in the EPS originating from the mucoid biofilms was clearly shown to increase both the rate and the extent of attachment of the EPS, as well as the layer's thickness. Also, the presence of calcium and elevated ionic strength increased the thickness of the EPS layer. Dynamic light scattering (DLS) showed that the presence of calcium and elevated ionic strength induced intermolecular attractive interactions in the mucoid EPS molecules. For the wild type EPS, in the presence of calcium, an elevated shift in the distribution of the diffusion coefficients was observed with DLS due to a more compacted conformation of the EPS molecules. Moreover, the alginate over-expression effect on EPS adherence was compared to the effect of alginate over-expression on P. aeruginosa cell attachment. In a parallel plate flow cell, under similar hydraulic and aquatic conditions as those applied for the EPS adsorption tests in the QCM-D flow cell, reduced adherence of the mucoid strain was clearly observed compared to the wild type isogenic bacteria. The results suggest that alginate contributes to steric hindrance and shielding of cell surface features and adhesins that are known to promote cell attachment.


Asunto(s)
Alginatos/metabolismo , Adhesión Bacteriana , Biopolímeros/fisiología , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiología , Sustancias Viscoelásticas/metabolismo , Biopelículas , Biopolímeros/aislamiento & purificación , Biopolímeros/metabolismo , Calcio/metabolismo , Conformación de Carbohidratos , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Microscopía Electrónica de Transmisión , Concentración Osmolar , Polisacáridos Bacterianos/aislamiento & purificación , Polisacáridos Bacterianos/fisiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestructura , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie
16.
Environ Sci Technol ; 44(20): 7937-43, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20873736

RESUMEN

Calcium-phosphate-scale formation on reverse osmosis (RO) membranes is a major limiting factor for cost-effective desalination of wastewater. We determined the effects of various organic chemical groups found on membrane surfaces on calcium-phosphate scaling. Langmuir films exposing different functional groups were equilibrated with a solution simulating the ionic profile of secondary effluent (SSE). Surface pressure-area (Langmuir) isotherms combined with ICP elemental analyses of the interfacial precipitate suggested acceleration of calcium-phosphate mineralization by the surface functional groups in the order: PO(4) > COOH ∼ NH(2) > COOH:NH(2) (1:1) > OH > ethylene glycol. Immersion of gold-coated silicon wafers self-assembled with different alkanethiols in SSE solution showed formation of a hydroxyapatite precipitate by X-ray diffraction and ATR-IR analysis. Data showed diverse influences of functional groups on mineralization, implying low calcium-phosphate scaling for uncharged surfaces or surfaces coated with both positively and negatively charged groups. This information is valuable for understanding scaling processes, and for designing of novel low-scaling membranes for water desalination.


Asunto(s)
Fosfatos de Calcio/química , Agua/química , Microscopía , Presión , Espectrofotometría Infrarroja , Propiedades de Superficie , Termodinámica , Difracción de Rayos X
17.
Environ Sci Technol ; 40(22): 7023-8, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17154011

RESUMEN

The paper analyzes the mechanism of partitioning and rejection of organic solutes by polyamide membranes for reverse osmosis and nanofiltration. The partitioning of homologous series of alcohols and polyols, in which polarity changes with size in opposite ways, was measured using attenuated total reflection IR spectroscopy. The results show that the partitioning of polyols monotonously decreases with size, whereas for alcohols it is not monotonous and slightly decreases for small C1-C3 alcohols followed by a sharp increase for larger alcohols. These results may be explained by assuming a heterogeneous structure of polyamide comprising a hydrophobic polyamide matrix and a polar internal aqueous phase. The partitioning data could consistently explain the results of rejection in standard filtration experiments. They clearly demonstrate that high/low partitioning may play a significant role in achieving a low/high rejection of organics. In particular, this points to the need to account for the partitioning effect while using molecular probes such as polyols or sugars for estimating the effective "pore" size or molecular weight cutoff of a membrane and for choosing/developing organic-rejecting membranes.


Asunto(s)
Membranas Artificiales , Compuestos Orgánicos/aislamiento & purificación , Termodinámica , Alcoholes , Filtración , Nylons , Compuestos Orgánicos/química , Ósmosis , Polímeros , Espectrofotometría Infrarroja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA