Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Genet ; 13: 855052, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677565

RESUMEN

Plasmodium knowlesi, a malaria parasite of Old World macaque monkeys, is used extensively to model Plasmodium biology. Recently, P. knowlesi was found in the human population of Southeast Asia, particularly Malaysia. P. knowlesi causes uncomplicated to severe and fatal malaria in the human host with features in common with the more prevalent and virulent malaria caused by Plasmodium falciparum. As such, P. knowlesi presents a unique opportunity to develop experimental translational model systems for malaria pathophysiology informed by clinical data from same-species human infections. Experimental lines of P. knowlesi represent well-characterized genetically stable parasites, and to maximize their utility as a backdrop for understanding malaria pathophysiology, genetically diverse contemporary clinical isolates, essentially wild-type, require comparable characterization. The Oxford Nanopore PCR-free long-read sequencing platform was used to sequence and de novo assemble P. knowlesi genomes from frozen clinical samples. The sequencing platform and assembly pipelines were designed to facilitate capturing data and describing, for the first time, P. knowlesi schizont-infected cell agglutination (SICA) var and Knowlesi-Interspersed Repeats (kir) multiple gene families in parasites acquired from nature. The SICAvar gene family members code for antigenically variant proteins analogous to the virulence-associated P. falciparum erythrocyte membrane protein (PfEMP1) multiple var gene family. Evidence presented here suggests that the SICAvar family members have arisen through a process of gene duplication, selection pressure, and variation. Highly evolving genes including PfEMP1family members tend to be restricted to relatively unstable sub-telomeric regions that drive change with core genes protected in genetically stable intrachromosomal locations. The comparable SICAvar and kir gene family members are counter-intuitively located across chromosomes. Here, we demonstrate that, in contrast to conserved core genes, SICAvar and kir genes occupy otherwise gene-sparse chromosomal locations that accommodate rapid evolution and change. The novel methods presented here offer the malaria research community not only new tools to generate comprehensive genome sequence data from small clinical samples but also new insight into the complexity of clinically important real-world parasites.

2.
Front Cell Infect Microbiol ; 11: 607686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33738266

RESUMEN

Malaria is responsible for unacceptably high morbidity and mortality, especially in Sub-Saharan African Nations. Malaria is caused by member species' of the genus Plasmodium and despite concerted and at times valiant efforts, the underlying pathophysiological processes leading to severe disease are poorly understood. Here we describe zoonotic malaria caused by Plasmodium knowlesi and the utility of this parasite as a model system for severe malaria. We present a method to generate long-read third-generation Plasmodium genome sequence data from archived clinical samples using the MinION platform. The method and technology are accessible, affordable and data is generated in real-time. We propose that by widely adopting this methodology important information on clinically relevant parasite diversity, including multiple gene family members, from geographically distinct study sites will emerge. Our goal, over time, is to exploit the duality of P. knowlesi as a well-used laboratory model and human pathogen to develop a representative translational model system for severe malaria that is informed by clinically relevant parasite diversity.


Asunto(s)
Malaria , Parásitos , Plasmodium knowlesi , Animales , Secuencia de Bases , Mapeo Cromosómico , Humanos , Plasmodium knowlesi/genética
3.
Sci Rep ; 8(1): 15429, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30337594

RESUMEN

Malaria infection during pregnancy, caused by the sequestering of Plasmodium falciparum parasites in the placenta, leads to high infant mortality and maternal morbidity. The parasite-placenta adherence mechanism is mediated by the VAR2CSA protein, a target for natural occurring immunity. Currently, vaccine development is based on its ID1-DBL2Xb domain however little is known about the global genetic diversity of the encoding var2csa gene, which could influence vaccine efficacy. In a comprehensive analysis of the var2csa gene in >2,000 P. falciparum field isolates across 23 countries, we found that var2csa is duplicated in high prevalence (>25%), African and Oceanian populations harbour a much higher diversity than other regions, and that insertions/deletions are abundant leading to an underestimation of the diversity of the locus. Further, ID1-DBL2Xb haplotypes associated with adverse birth outcomes are present globally, and African-specific haplotypes exist, which should be incorporated into vaccine design.


Asunto(s)
Antígenos de Protozoos/inmunología , Variación Genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Complicaciones Parasitarias del Embarazo/prevención & control , Anticuerpos Antiprotozoarios , Variación Antigénica/genética , Variación Antigénica/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/metabolismo , Femenino , Haplotipos , Humanos , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Placenta/parasitología , Embarazo , Complicaciones Parasitarias del Embarazo/inmunología
4.
J Med Microbiol ; 67(6): 884-888, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29693541

RESUMEN

We compared the genomes of 60 isolates of enteroinvasive Escherichia coli (EIEC) in order to better understand the step-wise evolutionary process from non-pathogenic to host-adapted pathogenic E. coli. All isolates belonged to either sequence type (ST) 6, ST99 or ST270. Each ST was located on different branches of the E. coli phylogeny and had invasion plasmids (pINVs) belonging to FII-21 (ST99, ST270), FII-27 (ST270) or FII-28 (ST6, ST270) incompatibility groups. A higher number of insertion sequence (IS) elements were identified in ST6 and ST270 than in ST99, and appeared to be driving the loss of functional genes. Comparison of the pINV from each ST revealed different degrees of gene loss, with pINV from ST270 being most similar to that found in Shigella species. We captured three EIEC STs at different stages of patho-adaptation, with ST270 being the most 'shigella-like' and the most divergent from non-pathogenic E. coli, and ST99 being the least divergent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA