Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(12): 3072-3089.e20, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38781967

RESUMEN

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.


Asunto(s)
Matriz Extracelular , Mucosa Intestinal , Animales , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Matriz Extracelular/metabolismo , Miosina Tipo II/metabolismo , Mesodermo/metabolismo , Mesodermo/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Morfogénesis , Metaloproteinasas de la Matriz/metabolismo
2.
Nat Commun ; 14(1): 3561, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322009

RESUMEN

Intratumor heterogeneity associates with poor patient outcome. Stromal stiffening also accompanies cancer. Whether cancers demonstrate stiffness heterogeneity, and if this is linked to tumor cell heterogeneity remains unclear. We developed a method to measure the stiffness heterogeneity in human breast tumors that quantifies the stromal stiffness each cell experiences and permits visual registration with biomarkers of tumor progression. We present Spatially Transformed Inferential Force Map (STIFMap) which exploits computer vision to precisely automate atomic force microscopy (AFM) indentation combined with a trained convolutional neural network to predict stromal elasticity with micron-resolution using collagen morphological features and ground truth AFM data. We registered high-elasticity regions within human breast tumors colocalizing with markers of mechanical activation and an epithelial-to-mesenchymal transition (EMT). The findings highlight the utility of STIFMap to assess mechanical heterogeneity of human tumors across length scales from single cells to whole tissues and implicates stromal stiffness in tumor cell heterogeneity.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Fenómenos Mecánicos , Elasticidad , Colágeno , Redes Neurales de la Computación , Microscopía de Fuerza Atómica/métodos
3.
Cell Metab ; 34(6): 857-873.e9, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35561674

RESUMEN

It is not well understood why diabetic individuals are more prone to develop severe COVID-19. To this, we here established a human kidney organoid model promoting early hallmarks of diabetic kidney disease development. Upon SARS-CoV-2 infection, diabetic-like kidney organoids exhibited higher viral loads compared with their control counterparts. Genetic deletion of the angiotensin-converting enzyme 2 (ACE2) in kidney organoids under control or diabetic-like conditions prevented viral detection. Moreover, cells isolated from kidney biopsies from diabetic patients exhibited altered mitochondrial respiration and enhanced glycolysis, resulting in higher SARS-CoV-2 infections compared with non-diabetic cells. Conversely, the exposure of patient cells to dichloroacetate (DCA), an inhibitor of aerobic glycolysis, resulted in reduced SARS-CoV-2 infections. Our results provide insights into the identification of diabetic-induced metabolic programming in the kidney as a critical event increasing SARS-CoV-2 infection susceptibility, opening the door to the identification of new interventions in COVID-19 pathogenesis targeting energy metabolism.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Riñón/metabolismo , Organoides , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2
4.
Curr Biol ; 30(20): R1266-R1268, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33080198

RESUMEN

New work identifies a mechanism of cell migration whereby cellular mechanical forces dissociate extracellular matrix (ECM) ligands from the substrate. The local dissociation of ECM ligands creates an ECM ligand gradient below the cell body that guides cellular migration.


Asunto(s)
Matriz Extracelular , Integrinas , Movimiento Celular , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Ligandos , Transporte de Proteínas
5.
Nat Mater ; 18(4): 397-405, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30778227

RESUMEN

The generation of organoids is one of the biggest scientific advances in regenerative medicine. Here, by lengthening the time that human pluripotent stem cells (hPSCs) were exposed to a three-dimensional microenvironment, and by applying defined renal inductive signals, we generated kidney organoids that transcriptomically matched second-trimester human fetal kidneys. We validated these results using ex vivo and in vitro assays that model renal development. Furthermore, we developed a transplantation method that utilizes the chick chorioallantoic membrane. This approach created a soft in vivo microenvironment that promoted the growth and differentiation of implanted kidney organoids, as well as providing a vascular component. The stiffness of the in ovo chorioallantoic membrane microenvironment was recapitulated in vitro by fabricating compliant hydrogels. These biomaterials promoted the efficient generation of renal vesicles and nephron structures, demonstrating that a soft environment accelerates the differentiation of hPSC-derived kidney organoids.


Asunto(s)
Espacio Extracelular/metabolismo , Riñón/citología , Organoides/citología , Células Madre Pluripotentes/citología , Técnicas de Cultivo de Tejidos/métodos , Diferenciación Celular , Microambiente Celular , Femenino , Humanos , Cinética , Células Madre Pluripotentes/metabolismo , Embarazo , Tercer Trimestre del Embarazo , Transcriptoma
6.
Nature ; 552(7684): 219-224, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29211717

RESUMEN

Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking 'adaptor' protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds-the molecular clutches-respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.


Asunto(s)
Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Adhesiones Focales , Integrinas/metabolismo , Ligandos , Modelos Biológicos , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Membrana Celular/química , Matriz Extracelular/química , Regulación de la Expresión Génica , Humanos , Ratones , Miosinas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Docilidad , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Señalizadoras YAP
7.
Cell ; 171(6): 1397-1410.e14, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29107331

RESUMEN

YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Poro Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animales , Fenómenos Biomecánicos , Proteínas de Ciclo Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Ratones , Factores de Transcripción , Transcripción Genética , Proteínas Señalizadoras YAP
8.
Mol Biol Cell ; 28(14): 1847-1852, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28251923

RESUMEN

Fundamental processes in cell adhesion, motility, and rigidity adaptation are regulated by integrin-mediated adhesion to the extracellular matrix (ECM). The link between the ECM component fibronectin (fn) and integrin α5ß1 forms a complex with ZO-1 in cells at the edge of migrating monolayers, regulating cell migration. However, how this complex affects the α5ß1-fn link is unknown. Here we show that the α5ß1/ZO-1 complex decreases the resistance to force of α5ß1-fn adhesions located at the edge of migrating cell monolayers while also increasing α5ß1 recruitment. Consistently with a molecular clutch model of adhesion, this effect of ZO-1 leads to a decrease in the density and intensity of adhesions in cells at the edge of migrating monolayers. Taken together, our results unveil a new mode of integrin regulation through modification of the mechanical properties of integrin-ECM links, which may be harnessed by cells to control adhesion and migration.


Asunto(s)
Integrina alfa5beta1/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Animales , Células CHO , Adhesión Celular/fisiología , Movimiento Celular , Cricetulus , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Fibronectinas/fisiología , Humanos , Integrina alfa5beta1/fisiología , Integrinas/metabolismo , Mecanotransducción Celular/fisiología , Unión Proteica , Proteína de la Zonula Occludens-1/fisiología
9.
Biomaterials ; 98: 64-78, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27179434

RESUMEN

Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.


Asunto(s)
Trasplante de Corazón , Miocardio/citología , Células Madre Pluripotentes/citología , Miosinas Cardíacas/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular , Colágeno/farmacología , Combinación de Medicamentos , Fenómenos Electrofisiológicos/efectos de los fármacos , Matriz Extracelular/metabolismo , Sitios Genéticos , Ventrículos Cardíacos/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Laminina/farmacología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Proteoglicanos/farmacología , Nucleasas de los Efectores Tipo Activadores de la Transcripción
10.
Nat Cell Biol ; 18(5): 540-8, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27065098

RESUMEN

Cell function depends on tissue rigidity, which cells probe by applying and transmitting forces to their extracellular matrix, and then transducing them into biochemical signals. Here we show that in response to matrix rigidity and density, force transmission and transduction are explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. We demonstrate that force transmission is regulated by a dynamic clutch mechanism, which unveils its fundamental biphasic force/rigidity relationship on talin depletion. Force transduction is triggered by talin unfolding above a stiffness threshold. Below this threshold, integrins unbind and release force before talin can unfold. Above the threshold, talin unfolds and binds to vinculin, leading to adhesion growth and YAP nuclear translocation. Matrix density, myosin contractility, integrin ligation and talin mechanical stability differently and nonlinearly regulate both force transmission and the transduction threshold. In all cases, coupling of talin unfolding dynamics to a theoretical clutch model quantitatively predicts cell response.


Asunto(s)
Matriz Extracelular/metabolismo , Mecanotransducción Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Proteínas de Ciclo Celular , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibronectinas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Integrinas/metabolismo , Ratones , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Fibras de Estrés/metabolismo , Talina/metabolismo , Vinculina/metabolismo , Proteínas Señalizadoras YAP
11.
Nanotechnology ; 26(5): 055501, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25573912

RESUMEN

Quartz tuning forks have become popular in nanotechnology applications, especially as sensors for scanning probe microscopy. The sensor's spring constant and the oscillation amplitude are required parameters to evaluate the tip-sample forces; however, there is certain controversy within the research community as to how to arrive at a value for the static spring constant of the device when working in shear mode. Here, we present two different methods based on finite element simulations, to determine the value of the spring constant of the sensors: the amplitude and Cleveland methods. The results obtained using these methods are compared to those using the geometrical method, and show that the latter overestimates the spring constant of the device.

12.
Nat Mater ; 13(6): 631-7, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24793358

RESUMEN

Tissue rigidity regulates processes in development, cancer and wound healing. However, how cells detect rigidity, and thereby modulate their behaviour, remains unknown. Here, we show that sensing and adaptation to matrix rigidity in breast myoepithelial cells is determined by the bond dynamics of different integrin types. Cell binding to fibronectin through either α5ß1 integrins (constitutively expressed) or αvß6 integrins (selectively expressed in cancer and development) adapts force generation, actin flow and integrin recruitment to rigidities associated with healthy or malignant tissue, respectively. In vitro experiments and theoretical modelling further demonstrate that this behaviour is explained by the different binding and unbinding rates of both integrin types to fibronectin. Moreover, rigidity sensing through differences in integrin bond dynamics applies both when integrins bind separately and when they compete for binding to fibronectin.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Fibronectinas/metabolismo , Integrinas/metabolismo , Mecanotransducción Celular/fisiología , Modelos Biológicos , Receptores de Vitronectina/metabolismo , Antígenos de Neoplasias/genética , Células Cultivadas , Fibronectinas/genética , Humanos , Integrinas/genética , Receptores de Vitronectina/genética
13.
Sensors (Basel) ; 13(6): 7156-69, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23722828

RESUMEN

Quartz Tuning Fork (QTF)-based Scanning Probe Microscopy (SPM) is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of the QTF electrically excited with two free prongs. The model goes beyond the state-of-the-art of numerical simulations currently found in the literature for this QTF configuration. We present the first numerical analysis of both the electrical and mechanical behavior of QTF devices. Experimental measurements obtained with 10 units of the same model of QTF validate the finite element model with a good agreement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...