Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Infect Dis ; 24(1): 1080, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350071

RESUMEN

BACKGROUND: False negative rapid diagnostic tests (RDTs) accruing to the non-detection of Plasmodium falciparum histidine-rich protein 2/3 (Pfhrp2/3) is threatening the diagnosis and management of malaria. Although regular monitoring is necessary to gauge the level of efficacy of the tool, studies in Cameroon remain limited. This study assessed Plasmodium spp. prevalence and Pfhrp2/3 gene deletions across ecological and transmission zones in Cameroon. METHODS: This is a cross-sectional, multi-site, community- and hospital- based study, in 21 health facilities and 14 communities covering all five ecological settings in low seasonal (LS) and intense perennial (IPT) malaria transmission zones between 2019 and 2021. Participants were screened for malaria parasite using Pfhrp2 RDT and light microscopic examination of thick peripheral blood smears. DNA was extracted from dried blood spot using chelex®-100 and P. falciparum confirmed using varATS real-time quantitative Polymerase Chain Reaction (qPCR), P. malariae and P. ovale by real-time qPCR of Plasmepsin gene, and P. vivax using a commercial kit. Isolates with amplified Pfcsp and Pfama-1 genes were assayed for Pfhrp 2/3 gene deletions by conventional PCR. RESULTS: A total of 3,373 participants enrolled, 1,786 Plasmodium spp. infected, with 77.4% P. falciparum. Discordant RDT and qPCR results (False negatives) were reported in 191 (15.7%) P. falciparum mono-infected samples from LS (29%, 42) and IPT (13.9%, 149). The Pfhrp2+/Pfhrp3 + genotype was most frequent, similar between LS (5.5%, 8/145) and IPT (6.0%, 65/1,076). Single Pfhrp2 and Pfhrp3 gene deletions occurred in LS (0.7%, 1/145 each) and IPT (3.6%, 39/1,076 vs. 2.9%, 31/1,076), respectively. Whilst a single sample harboured Pfhrp2-/Pfhrp3- genotype in LS, 2.4% (26/1,076) were double deleted at IPT. Pfhrp2+/Pfhrp3- (0.3%, 3/1,076) and Pfhrp2-/Pfhrp3+ (1.2%, 13/1,076) genotypes were only observed in IPT. Pfhrp2, Pfhrp3 deletions and Pfhrp2-/Pfhrp3- genotype accounted for 78.8% (26), 69.7% (23) and 63.6% (21) RDT false negatives, respectively. CONCLUSION: Plasmodium falciparum remains the most dominant and widely distributed Plasmodium species across transmission and ecological zones in Cameroon. Although the low prevalence of Pfhrp2/3 gene deletions supports the continued use of HRP2-based RDTs for routine malaria diagnosis, the high proportion of false-negatives due to gene deleted parasites necessitates continued surveillance to inform control and elimination efforts.


Asunto(s)
Antígenos de Protozoos , Pruebas Diagnósticas de Rutina , Eliminación de Gen , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Estudios Transversales , Camerún/epidemiología , Proteínas Protozoarias/genética , Humanos , Antígenos de Protozoos/genética , Plasmodium falciparum/genética , Adulto , Adolescente , Masculino , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Malaria Falciparum/parasitología , Femenino , Niño , Adulto Joven , Preescolar , Persona de Mediana Edad , Reacciones Falso Negativas , Lactante , Prevalencia , Estaciones del Año , Anciano
2.
medRxiv ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39314932

RESUMEN

Plasmodium malariae is geographically widespread but neglected and may become more prevalent as P. falciparum declines. We completed the largest genomic study of African P. malariae to-date by performing hybrid capture and sequencing of 77 isolates from Cameroon (n=7), the Democratic Republic of the Congo (n=16), Nigeria (n=4), and Tanzania (n=50) collected between 2015 and 2021. There is no evidence of geographic population structure. Nucleotide diversity was significantly lower than in co-localized P. falciparum isolates, while linkage disequilibrium was significantly higher. Genome-wide selection scans identified no erythrocyte invasion ligands or antimalarial resistance orthologs as top hits; however, targeted analyses of these loci revealed evidence of selective sweeps around four erythrocyte invasion ligands and six antimalarial resistance orthologs. Demographic inference modeling suggests that African P. malariae is recovering from a bottleneck. Altogether, these results suggest that P. malariae is genomically atypical among human Plasmodium spp. and panmictic in Africa.

3.
Malar J ; 23(1): 262, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210318

RESUMEN

BACKGROUND: Rapid diagnostic tests (RDTs) provide quick, easy, and convenient early diagnosis of malaria ensuring better case management particularly in resource-constrained settings. Nevertheless, the efficiency of HRP2-based RDT can be compromised by Plasmodium falciparum histidine-rich protein 2/3 gene deletion and genetic diversity. This study explored the genetic diversity of PfHRP2/3 in uncomplicated malaria cases from Ethiopia. METHODS: A cross-sectional study was conducted from June 2022 to March 2023 at Metehara, Zenzelema and Kolla Shele health centres, Ethiopia. Finger-prick blood samples were collected for RDT testing and microscopic examination. For molecular analysis, parasite genomic DNA was extracted from venous blood. Plasmodium falciparum was confirmed using VarATS real time PCR. Additionally, PfHRP2/3 was amplified, and DNA amplicons were sequenced using Oxford Nanopore technology. RESULTS: PfHRP2/3 sequences revealed small variations in the frequency and number of amino acid repeat types per isolate across the three health centres. Twelve and eight types of amino acid repeats were identified for PfHRP2 and PfHRP3, respectively, which had been previously characterized. Repeat type 1, 4 and 7 were present in both PfHRP2 and PfHRP3 amino acid sequences. Type 2 and 7 repeats were commonly dispersed in PfHRP2, while repeat types 16 and 17 were found only in PfHRP3. A novel 17 V repeat type variant, which has never been reported in Ethiopia, was identified in six PfHRP3 amino acid sequences. The majority of the isolates, as determined by the Baker's logistic regression model, belonged to group C, of which 86% of them were sensitive to PfHRP2-based RDT. Likewise, PfHRP2-based RDT detected 100% of the isolates in group A (product of type 2 × type 7 repeats ≥ 100) and 85.7% in group B (product of types 2 × type 7 repeats 50-99) at a parasitaemia level > 250 parasite/µl. CONCLUSION: This study highlights the significant diversity observed in PfHRP2 and PfHRP3 among clinical isolates of Plasmodium falciparum in Ethiopia. This emphasizes the necessity for monitoring of PfHRP2- based RDT efficacy and their repeat type distribution using a large sample size and isolates from various ecological settings.


Asunto(s)
Antígenos de Protozoos , Pruebas Diagnósticas de Rutina , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Etiopía , Proteínas Protozoarias/genética , Antígenos de Protozoos/genética , Estudios Transversales , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Humanos , Adulto , Femenino , Adulto Joven , Adolescente , Masculino , Persona de Mediana Edad , Niño , Preescolar , Variación Genética , Lactante
4.
Front Cell Infect Microbiol ; 14: 1366563, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716192

RESUMEN

Background: Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods: Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results: A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion: Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Proteínas de Microfilamentos , Plasmodium falciparum , Adulto , Femenino , Humanos , Masculino , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Genotipo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Proteínas de Microfilamentos/genética , Repeticiones de Microsatélite/genética , Mutación , Nigeria , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Polimorfismo Genético , Proteínas Protozoarias/genética , Recurrencia
5.
Parasit Vectors ; 16(1): 309, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653544

RESUMEN

BACKGROUND: The malaria parasite Plasmodium falciparum utilizes multiple alternative receptor-ligand interactions for the invasion of human erythrocytes. While some P. falciparum clones make use of sialic acid (SA) residues on the surface of the human glycophorin receptors to invade the erythrocyte, others use alternative receptors independent of sialic acid residues. We hypothesized that over the years, intensified malaria control interventions and declining prevalence in The Gambia have resulted in a selection of parasites with a dominant invasion pathways and ligand expression profiles. METHODS: Blood samples were collected from 65 malaria-infected participants with uncomplicated malaria across 3 years (2015, 2016, and 2021). Genetic diversity was determined by genotyping the merozoite surface protein 2 (msp2) polymorphic gene of P. falciparum. Erythrocyte invasion phenotypes were determined using neuraminidase, trypsin, and chymotrypsin enzymes, known to cleave different receptors from the surface of the erythrocyte. Schizont-stage transcript levels were obtained for a panel of 6 P. falciparum invasion ligand genes (eba175, eba181, Rh2b, Rh4, Rh5, and clag2) using 48 successfully cultured isolates. RESULTS: Though the allelic heterozygosity of msp2 repeat region decreased as expected with reduced transmission, there was an increase in infections with more than a single msp2 allelotype from 2015 to 2021. The invasion phenotypes of these isolates were mostly SA independent with a continuous increase from 2015 to 2021. Isolates from 2021 were highly inhibited by chymotrypsin treatment compared to isolates from 2015 and 2016. Higher invasion inhibition for 2021 isolates was further obtained following erythrocyte treatment with a combination of chymotrypsin and trypsin. The transcript levels of invasion ligand genes varied across years. However, levels of clag2, a rhoptry-associated protein, were higher in 2015 and 2016 isolates than in 2021 isolates, while Rh5 levels were higher in 2021 compared to other years. CONCLUSIONS: Overall, these findings suggest increasing mixed infections with an increase in the use of sialic-acid independent invasion pathways by P. falciparum clinical isolates in the Western part of Gambia.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Gambia/epidemiología , Ácido N-Acetilneuramínico , Quimotripsina , Ligandos , Tripsina , Malaria Falciparum/epidemiología
6.
Malar J ; 22(1): 171, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270589

RESUMEN

BACKGROUND: Pfcrt gene has been associated with chloroquine resistance and the pfmdr1 gene can alter malaria parasite susceptibility to lumefantrine, mefloquine, and chloroquine. In the absence of chloroquine (CQ) and extensive use of artemether-lumefantrine (AL) from 2004 to 2020 to treat uncomplicated falciparum malaria, pfcrt haplotype, and pfmdr1 single nucleotide polymorphisms (SNPs) were determined in two sites of West Ethiopia with a gradient of malaria transmission. METHODS: 230 microscopically confirmed P. falciparum isolates were collected from Assosa (high transmission area) and Gida Ayana (low transmission area) sites, of which 225 of them tested positive by PCR. High-Resolution Melting Assay (HRM) was used to determine the prevalence of pfcrt haplotypes and pfmdr1 SNPs. Furthermore, the pfmdr1 gene copy number (CNV) was determined using real-time PCR. A P-value of less or equal to 0.05 was considered significant. RESULTS: Of the 225 samples, 95.5%, 94.4%, 86.7%, 91.1%, and 94.2% were successfully genotyped with HRM for pfcrt haplotype, pfmdr1-86, pfmdr1-184, pfmdr1-1042 and pfmdr1-1246, respectively. The mutant pfcrt haplotypes were detected among 33.5% (52/155) and 80% (48/60) of isolates collected from the Assosa and Gida Ayana sites, respectively. Plasmodium falciparum with chloroquine-resistant haplotypes was more prevalent in the Gida Ayana area compared with the Assosa area (COR = 8.4, P = 0.00). Pfmdr1-N86Y wild type and 184F mutations were found in 79.8% (166/208) and 73.4% (146/199) samples, respectively. No single mutation was observed at the pfmdr1-1042 locus; however, 89.6% (190/212) of parasites in West Ethiopia carry the wild-type D1246Y variants. Eight pfmdr1 haplotypes at codons N86Y-Y184F-D1246Y were identified with the dominant NFD 61% (122/200). There was no difference in the distribution of pfmdr1 SNPs, haplotypes, and CNV between the two study sites (P > 0.05). CONCLUSION: Plasmodium falciparum with the pfcrt wild-type haplotype was prevalent in high malaria transmission site than in low transmission area. The NFD haplotype was the predominant haplotype of the N86Y-Y184F-D1246Y. A continuous investigation is needed to closely monitor the changes in the pfmdr1 SNPs, which are associated with the selection of parasite populations by ACT.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Etiopía/epidemiología , Combinación Arteméter y Lumefantrina/uso terapéutico , Arteméter/uso terapéutico , Malaria Falciparum/parasitología , Cloroquina/farmacología , Cloroquina/uso terapéutico , Malaria/tratamiento farmacológico , Lumefantrina/uso terapéutico , Plasmodium falciparum , Polimorfismo de Nucleótido Simple , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico , Resistencia a Medicamentos/genética
7.
Malar J ; 21(1): 383, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522733

RESUMEN

BACKGROUND: Genetic diversity of malaria parasites can inform the intensity of transmission and poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity would provide essential information about the ongoing control efforts. This study aimed to explore allelic polymorphism of merozoite surface protein 1 (msp1) and merozoite surface protein 2 (msp2) to determine the genetic diversity and multiplicity of Plasmodium falciparum infections circulating in high and low transmission sites in western Ethiopia. METHODS: Parasite genomic DNA was extracted from a total of 225 dried blood spots collected from confirmed uncomplicated P. falciparum malaria-infected patients in western Ethiopia. Of these, 72.4% (163/225) and 27.6% (62/225) of the samples were collected in high and low transmission areas, respectively. Polymorphic msp1 and msp2 genes were used to explore the genetic diversity and multiplicity of falciparum malaria infections. Genotyping of msp1 was successful in 86.5% (141/163) and 88.7% (55/62) samples collected from high and low transmission areas, respectively. Genotyping of msp2 was carried out among 85.3% (139/163) and 96.8% (60/62) of the samples collected in high and low transmission sites, respectively. Plasmodium falciparum msp1 and msp2 genes were amplified by nested PCR and the PCR products were analysed by QIAxcel ScreenGel Software. A P-value of less or equal to 0.05 was considered significant. RESULTS: High prevalence of falciparum malaria was identified in children less than 15 years as compared with those ≥ 15 years old (AOR = 2.438, P = 0.005). The three allelic families of msp1 (K1, MAD20, and RO33) and the two allelic families of msp2 (FC27 and 3D7), were observed in samples collected in high and low transmission areas. However, MAD 20 and FC 27 alleles were the predominant allelic families in both settings. Plasmodium falciparum isolates circulating in western Ethiopia had low genetic diversity and mean MOI. No difference in mean MOI between high transmission sites (mean MOI 1.104) compared with low transmission area (mean MOI 1.08) (p > 0.05). The expected heterozygosity of msp1 was slightly higher in isolates collected from high transmission sites (He = 0.17) than in those isolates from low transmission (He = 0.12). However, the heterozygosity of msp2 was not different in both settings (Pfmsp2: 0.04 in high transmission; pfmsp2: 0.03 in low transmission). CONCLUSION: Plasmodium falciparum from clinical malaria cases in western Ethiopia has low genetic diversity and multiplicity of infection irrespective of the intensity of transmission at the site of sampling. These may be signaling the effectiveness of malaria control strategies in Ethiopia; although further studies are required to determine how specific intervention strategies and other parameters that drive the pattern.


Asunto(s)
Malaria Falciparum , Proteína 1 de Superficie de Merozoito , Niño , Masculino , Humanos , Adolescente , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Antígenos de Protozoos/genética , Etiopía/epidemiología , Proteínas Protozoarias/genética , Variación Genética , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Proteínas de la Membrana/genética , Genotipo
8.
Sci Rep ; 12(1): 21881, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536036

RESUMEN

Plasmodium malariae, a neglected human malaria parasite, contributes up to 10% of malaria infections in sub-Saharan Africa (sSA). Though P. malariae infection is considered clinically benign, it presents mostly as coinfections with the dominant P. falciparum. Completion of its reference genome has paved the way to further understand its biology and interactions with the human host, including responses to antimalarial interventions. We characterized 75 P. malariae isolates from seven endemic countries in sSA using highly divergent microsatellites. The P. malariae infections were highly diverse and five subpopulations from three ancestries (independent of origin of isolates) were determined. Sequences of 11 orthologous antimalarial resistance genes, identified low frequency single nucleotide polymorphisms (SNPs), strong linkage disequilibrium between loci that may be due to antimalarial drug selection. At least three sub-populations were detectable from a subset of denoised SNP data from mostly the mitochondrial cytochrome b coding region. This evidence of diversity and selection calls for including P. malariae in malaria genomic surveillance towards improved tools and strategies for malaria elimination.


Asunto(s)
Malaria , Plasmodium malariae , Humanos , África del Sur del Sahara , Antimaláricos/uso terapéutico , Malaria/parasitología , Repeticiones de Microsatélite , Plasmodium malariae/genética , Polimorfismo de Nucleótido Simple , Resistencia a Medicamentos/genética
9.
J Public Health Afr ; 13(3): 1616, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36277952

RESUMEN

Background: The outbreak of COVID-19 disease and rapid spread of the virus outside China led to its declaration as a Public Health Emergency of International Concern (PHEIC) in January 2020. Key elements of the early intervention strategy focused on laboratory diagnosis and screening at points of entry and imposition of restrictions in crossborder activities. Objective: We report the role the Medical Research Council Unit, The Gambia (MRCG) played in the early implementation of molecular testing for COVID-19 in The Gambia as part of the national outbreak response. Methods: Laboratory staff members, with experience in molecular biology assays, were identified and trained on COVID-19 testing at the Africa CDC training workshop in Dakar, Senegal. Thereafter risks assessments, drafting of standard operating procedures (SOPs) and inhouse training enabled commencement of testing using commercial RTPCR kits. Subsequently, testing was expanded to the National Public Health Laboratroy and also implemented across field sites for rapid response across the country. Results: Capacity for COVID-19 testing at MRCG was developed and can process aproximately 350 tests per day, which can be further scaled up as the demand for testing increases. Conclusion: The long presence of the Unit in The Gambia and strong collaborative relationship with the National Health Ministry, allowed for a synergistc approach in mounting an effective response that contributed in delaying the establishment of community transmission in the country.

10.
Antimicrob Agents Chemother ; 66(9): e0000222, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35993723

RESUMEN

The emergence of artemisinin-resistant parasites in Africa has had a devastating impact, causing most malaria cases and related deaths reported on the continent. In Ethiopia, artemether-lumefantrine (AL) is the first-line drug for the treatment of uncomplicated falciparum malaria. This study is one of the earliest evaluations of artemether-lumefantrine (AL) efficacy in western Ethiopia, 17 years after the introduction of this drug in the study area. This study aimed at assessing PCR- corrected clinical and parasitological responses at 28 days following AL treatment. Sixty uncomplicated falciparum malaria patients were enrolled, treated with standard doses of AL, and monitored for 28 days with clinical and parasitological assessments from September 15 to December 15, 2020. Microscopy was used for patient recruitment and molecular diagnosis of P. falciparum was performed by Var gene acidic terminal sequence (varATS) real-time PCR on dried blood spots collected from each patient from day 0 and on follow-up days 1, 2, 3, 7, 14, 21, and 28. MspI and msp2 genotyping was done to confirm occurrence of recrudescence. Data entry and analysis were done by using the WHO-designed Excel spreadsheet and SPSS version 20 for Windows. A P value of less or equal to 0.05 was considered significant. From a total of 60 patients enrolled in this efficacy study, 10 were lost to follow-up; the results were analyzed for 50 patients. All the patients were fever-free on day 3. The asexual parasite positivity rate on day 3 was zero. However; 60% of the patients were PCR positive on day 3. PCR positivity on day 3 was more common among patients <15 years old as compared with those ≥15 years old (AOR = 6.44, P = 0.027). Only two patients met the case definition of treatment failure. These patients were classified as a late clinical failure as they showed symptoms of malaria and asexual stages of the parasite detected by microscopy on day 14 of their follow-ups. Hence, the Kaplan-Meier analysis of PCR- corrected adequate clinical and parasitological response (ACPR) rate of AL among study participants was 96% (95% CI: 84.9-99). In seven patients, the residual submicroscopic parasitemia persists from day 0 to day 28 of the follow-up. In addition, 16% (8/50) of patients were PCR- and then turned PCR+ after day 7 of the follow-up. AL remains efficacious for the treatment of uncomplicated falciparum malaria in the study area. However, the persistence of PCR-detected residual submicroscopic parasitemia following AL might compromise this treatment and need careful monitoring.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Adolescente , Antimaláricos/uso terapéutico , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Progresión de la Enfermedad , Etanolaminas/uso terapéutico , Etiopía , Fluorenos/uso terapéutico , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Parasitemia/tratamiento farmacológico , Plasmodium falciparum/genética , Sudán , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA