Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Explor Target Antitumor Ther ; 5(2): 251-259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745775

RESUMEN

Adaptor proteins play essential roles in various intracellular signaling pathways. Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that possesses pleckstrin homology (PH) and Src homology 2 (SH2) domains, as well as a YXXQ signal transducer and activator of transcription 3 (STAT3)-binding motif in its C-terminal region. STAP-2 is also a substrate of breast tumor kinase (BRK). STAP-2/BRK expression is deregulated in breast cancers and enhances STAT3-dependent cell proliferation. In prostate cancer cells, STAP-2 interacts with and stabilizes epidermal growth factor receptor (EGFR) after stimulation, resulting in the upregulation of EGFR signaling, which contributes to cancer-cell proliferation and tumor progression. Therefore, inhibition of the interaction between STAP-2 and BRK/EGFR may be a possible therapeutic strategy for these cancers. For this purpose, peptides that interfere with STAP-2/BRK/EGFR binding may have great potential. Indeed, the identified peptide inhibitor successfully suppressed the STAP-2/EGFR protein interaction, EGFR stabilization, and cancer-cell growth. Furthermore, the peptide inhibitor suppressed tumor formation in human prostate- and lung-cancer cell lines in a murine xenograft model. This review focuses on the inhibitory peptide as a promising candidate for the treatment of prostate and lung cancers.

2.
Sci Rep ; 14(1): 5799, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461189

RESUMEN

Signal-transducing adaptor protein-2 (STAP-2) is an adaptor molecule involved in several cellular signaling cascades. Here, we attempted to identify novel STAP-2 interacting molecules, and identified c-Cbl associated protein (CAP) as a binding protein through the C-terminal proline-rich region of STAP-2. Expression of STAP-2 increased the interaction between CAP and c-Cbl, suggesting that STAP-2 bridges these proteins and enhances complex formation. CAP/c-Cbl complex is known to regulate GLUT4 translocation in insulin signaling. STAP-2 overexpressed human hepatocyte Hep3B cells showed enhanced GLUT4 translocation after insulin treatment. Elevated levels of Stap2 mRNA have been observed in 3T3-L1 cells and mouse embryonic fibroblasts (MEFs) during adipocyte differentiation. The differentiation of 3T3-L1 cells into adipocytes was highly promoted by retroviral overexpression of STAP-2. In contrast, STAP-2 knockout (KO) MEFs exhibited suppressed adipogenesis. The increase in body weight with high-fat diet feeding was significantly decreased in STAP-2 KO mice compared to WT animals. These data suggest that the expression of STAP-2 correlates with adipogenesis. Thus, STAP-2 is a novel regulatory molecule that controls insulin signal transduction by forming a c-Cbl/STAP-2/CAP ternary complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Insulina , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adipocitos/metabolismo , Fibroblastos/metabolismo , Insulina/metabolismo , Transducción de Señal , Diferenciación Celular/genética
3.
J Immunol ; 212(6): 951-961, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38315039

RESUMEN

Signal-transducing adaptor protein (STAP)-1 is an adaptor protein that is widely expressed in T cells. In this article, we show that STAP-1 upregulates TCR-mediated T cell activation and T cell-mediated airway inflammation. Using STAP-1 knockout mice and STAP-1-overexpressing Jurkat cells, we found that STAP-1 enhanced TCR signaling, resulting in increased calcium mobilization, NFAT activity, and IL-2 production. Upon TCR engagement, STAP-1 binding to ITK promoted formation of ITK-LCK and ITK-phospholipase Cγ1 complexes to induce downstream signaling. Consistent with the results, STAP-1 deficiency reduced the severity of symptoms in experimental autoimmune encephalomyelitis. Single-cell RNA-sequencing analysis revealed that STAP-1 is essential for accumulation of T cells and Ifng and Il17 expression in spinal cords after experimental autoimmune encephalomyelitis induction. Th1 and Th17 development was also attenuated in STAP-1 knockout naive T cells. Taken together, STAP-1 enhances TCR signaling and plays a role in T cell-mediated immune disorders.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Transducción de Señal , Activación de Linfocitos , Inflamación , Receptores de Antígenos de Linfocitos T , Proteínas Adaptadoras Transductoras de Señales/genética
4.
FEBS Lett ; 597(19): 2433-2445, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37669828

RESUMEN

Although signal-transducing adaptor protein-2 (STAP-2) acts in certain immune responses, its role in B cell receptor (BCR)-mediated signals remains unknown. In this study, we have revealed that BCR-mediated signals, cytokine production and antibody production were increased in STAP-2 knockout (KO) mice compared with wild-type (WT) mice. Phosphorylation of tyrosine-protein kinase LYN Y508 was reduced in STAP-2 KO B cells after BCR stimulation. Mechanistic analysis revealed that STAP-2 directly binds to LYN, dependently of STAP-2 Y250 phosphorylation by LYN. Furthermore, phosphorylation of STAP-2 enhanced interactions between LYN and tyrosine-protein kinase CSK, resulting in enhanced CSK-mediated LYN Y508 phosphorylation. These results suggest that STAP-2 is crucial for controlling BCR-mediated signals and antibody production by enhanced CSK-mediated feedback regulation of LYN.


Asunto(s)
Transducción de Señal , Familia-src Quinasas , Ratones , Animales , Proteína Tirosina Quinasa CSK/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Fosforilación , Linfocitos B/metabolismo , Ratones Noqueados
5.
J Immunol ; 211(5): 755-766, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37417746

RESUMEN

Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that contains pleckstrin and Src homology 2-like domains, as well as a proline-rich region in its C-terminal region. Our previous study demonstrated that STAP-2 positively regulates TCR signaling by associating with TCR-proximal CD3ζ ITAMs and the lymphocyte-specific protein tyrosine kinase. In this study, we identify the STAP-2 interacting regions of CD3ζ ITAMs and show that the STAP-2-derived synthetic peptide (iSP2) directly interacts with the ITAM sequence and blocks the interactions between STAP-2 and CD3ζ ITAMs. Cell-penetrating iSP2 was delivered into human and murine T cells. iSP2 suppressed cell proliferation and TCR-induced IL-2 production. Importantly, iSP2 treatment suppressed TCR-mediated activation of naive CD4+ T cells and decreased immune responses in CD4+ T cell-mediated experimental autoimmune encephalomyelitis. It is likely that iSP2 is a novel immunomodulatory tool that modulates STAP-2-mediated activation of TCR signaling and represses the progression of autoimmune diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Transducción de Señal , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inmunidad , Receptores de Antígenos de Linfocitos T/metabolismo , Fragmentos de Péptidos/farmacología
6.
J Biol Chem ; 299(1): 102724, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410436

RESUMEN

Signal-transducing adaptor family member-2 (STAP-2) is an adaptor protein that regulates various intracellular signals. We previously demonstrated that STAP-2 binds to epidermal growth factor receptor (EGFR) and facilitates its stability and activation of EGFR signaling in prostate cancer cells. Inhibition of this interaction may be a promising direction for cancer treatment. Here, we found that 2D5 peptide, a STAP-2-derived peptide, blocked STAP-2-EGFR interactions and suppressed EGFR-mediated proliferation in several cancer cell lines. 2D5 peptide inhibited tumor growth of human prostate cancer cell line DU145 and human lung cancer cell line A549 in murine xenograft models. Additionally, we determined that EGFR signaling and its stability were decreased by 2D5 peptide treatment during EGF stimulation. In conclusion, our study shows that 2D5 peptide is a novel anticancer peptide that inhibits STAP-2-mediated activation of EGFR signaling and suppresses prostate and lung cancer progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias Pulmonares , Péptidos , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias de la Próstata/metabolismo , Transducción de Señal , Células A549 , Línea Celular Tumoral , Péptidos/farmacología
7.
Biomedicines ; 10(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36551835

RESUMEN

Adaptor molecules play a crucial role in signal transduction in immune cells. Several adaptor molecules, such as the linker for the activation of T cells (LAT) and SH2 domain-containing leukocyte protein of 76 kDa (SLP-76), are essential for T cell development and activation following T cell receptor (TCR) aggregation, suggesting that adaptor molecules are good therapeutic targets for T cell-mediated immune disorders, such as autoimmune diseases and allergies. Signal-transducing adaptor protein (STAP)-2 is a member of the STAP family of adaptor proteins. STAP-2 functions as a scaffold for various intracellular proteins, including BRK, signal transducer, and activator of transcription (STAT)3, STAT5, and myeloid differentiation primary response protein (MyD88). In T cells, STAP-2 is involved in stromal cell-derived factor (SDF)-1α-induced migration, integrin-dependent cell adhesion, and Fas-mediated apoptosis. We previously reported the critical function of STAP-2 in TCR-mediated T cell activation and T cell-mediated autoimmune diseases. Here, we review how STAP-2 affects the pathogenesis of T cell-mediated inflammation and immune diseases in order to develop novel STAP-2-targeting therapeutic strategies.

8.
Cells ; 11(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36010693

RESUMEN

Since the time of Rudolf Virchow in the 19th century, it has been well-known that cancer-associated inflammation contributes to tumor initiation and progression. However, it remains unclear whether a collapse of the balance between the antitumor immune response via the immunological surveillance system and protumor immunity due to cancer-related inflammation is responsible for cancer malignancy. The majority of inflammatory signals affect tumorigenesis by activating signal transducer and activation of transcription 3 (STAT3) and nuclear factor-κB. Persistent STAT3 activation in malignant cancer cells mediates extremely widespread functions, including cell growth, survival, angiogenesis, and invasion and contributes to an increase in inflammation-associated tumorigenesis. In addition, intracellular STAT3 activation in immune cells causes suppressive effects on antitumor immunity and leads to the differentiation and mobilization of immature myeloid-derived cells and tumor-associated macrophages. In many cancer types, STAT3 does not directly rely on its activation by oncogenic mutations but has important oncogenic and malignant transformation-associated functions in both cancer and stromal cells in the tumor microenvironment (TME). We have reported a series of studies aiming towards understanding the molecular mechanisms underlying the proliferation of various types of tumors involving signal-transducing adaptor protein-2 as an adaptor molecule that modulates STAT3 activity, and we recently found that AT-rich interactive domain-containing protein 5a functions as an mRNA stabilizer that orchestrates an immunosuppressive TME in malignant mesenchymal tumors. In this review, we summarize recent advances in our understanding of the functional role of STAT3 in tumor progression and introduce novel molecular mechanisms of cancer development and malignant transformation involving STAT3 activation that we have identified to date. Finally, we discuss potential therapeutic strategies for cancer that target the signaling pathway to augment STAT3 activity.


Asunto(s)
Neoplasias , Factor de Transcripción STAT3 , Carcinogénesis/patología , Transformación Celular Neoplásica/genética , Humanos , Inflamación/patología , Monitorización Inmunológica , Neoplasias/metabolismo , Factor de Transcripción STAT3/metabolismo , Microambiente Tumoral
9.
J Immunol ; 209(1): 57-68, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35725273

RESUMEN

TCR ligation with an Ag presented on MHC molecules promotes T cell activation, leading to the selection, differentiation, and proliferation of T cells and cytokine production. These immunological events are optimally arranged to provide appropriate responses against a variety of pathogens. We here propose signal-transducing adaptor protein-2 (STAP-2) as a new positive regulator of TCR signaling. STAP-2-deficient T cells showed reduced, whereas STAP-2-overexpressing T cells showed enhanced, TCR-mediated signaling and downstream IL-2 production. For the mechanisms, STAP-2 associated with TCR-proximal CD3ζ immunoreceptor tyrosine activation motifs and phosphorylated LCK, resulting in enhancement of their binding after TCR stimulation. In parallel, STAP-2 expression is required for full activation of downstream TCR signaling. Importantly, STAP-2-deficient mice exhibited slight phenotypes of CD4+ T-cell-mediated inflammatory diseases, such as experimental autoimmune encephalomyelitis, whereas STAP-2-overexpressing transgenic mice showed severe phenotypes of these diseases. Together, STAP-2 is an adaptor protein to enhance TCR signaling; therefore, manipulating STAP-2 will have an ability to improve the treatment of patients with autoimmune diseases as well as the chimeric Ag receptor T cell therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transducción de Señal , Animales , Activación de Linfocitos , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T
10.
Biochem Biophys Res Commun ; 603: 1-6, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35259639

RESUMEN

Anamorsin (AM) is an anti-apoptotic molecule cloned by us as a molecule that confers resistance against apoptosis induced by growth factor deprivation. AM-deficient mice are embryonic lethal, which impedes detailed analyses of the roles of AM in various types of adult cells. To overcome the embryonic lethality, we generated AM conditional knockout (AMflox/flox) mice and cell type-specific genetic modification became possible using the Cre-loxP system. CD19-Cre/AMflox/flox mice with AM deleted specifically in CD19+ B cells exhibited less B220+ B cells in their spleen, peripheral blood, and lymph node compared with control CD19-Cre mice. Using flow cytometry to categorize bone marrow and spleen cells into B cell subsets, we observed significantly less follicular type I cells, which are the most mature follicular B cells, compared with control CD19-Cre mice. These data suggest that AM has an important role in the generation of mature B cells.


Asunto(s)
Antígenos CD19 , Linfocitos B , Animales , Antígenos CD19/genética , Apoptosis , Diferenciación Celular , Ratones , Ratones Noqueados , Bazo
11.
Int Immunol ; 34(6): 303-312, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35192696

RESUMEN

Jak3, a member of the Janus kinase family, is essential for the cytokine receptor common gamma chain (γc)-mediated signaling. During activation of Jak3, tyrosine residues are phosphorylated and potentially regulate its kinase activity. We identified a novel tyrosine phosphorylation site within mouse Jak3, Y820, which is conserved in human Jak3, Y824. IL-2-induced tyrosine phosphorylation of Jak3 Y824 in human T cell line HuT78 cells was detected by using a phosphospecific, pY824, antibody. Mutation of mouse Jak3 Y820 to alanine (Y820A) showed increased autophosphorylation of Jak3 and enhanced signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation and transcriptional activation. Stably expressed Jak3 Y820A in F7 cells, an IL-2 responsive mouse pro-B cell line Ba/F3, exhibited enhanced IL-2-dependent cell growth. Mechanistic studies demonstrated that interaction between Jak3 and STAT5 increased in Jak3 Y820A compared to wild-type Jak3. These data suggest that Jak3 Y820 plays a role in negative regulation of Jak3-mediated STAT5 signaling cascade upon IL-2-stimulation. We speculate that this occurs through an interaction promoted by the tyrosine phosphorylated Y820 or a conformational change by Y820 mutation with either the STAT directly or with the recruitment of molecules such as phosphatases via a SH2 interaction. Additional studies will focus on these interactions as Jak3 plays a crucial role in disease and health.


Asunto(s)
Factor de Transcripción STAT5 , Tirosina , Animales , Interleucina-2/metabolismo , Interleucina-2/farmacología , Janus Quinasa 3 , Ratones , Proteínas de la Leche/metabolismo , Fosforilación , Factor de Transcripción STAT5/metabolismo , Transducción de Señal
12.
World J Biol Chem ; 13(1): 1-14, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35126866

RESUMEN

Immune system is a complex network that clears pathogens, toxic substrates, and cancer cells. Distinguishing self-antigens from non-self-antigens is critical for the immune cell-mediated response against foreign antigens. The innate immune system elicits an early-phase response to various stimuli, whereas the adaptive immune response is tailored to previously encountered antigens. During immune responses, B cells differentiate into antibody-secreting cells, while naïve T cells differentiate into functionally specific effector cells [T helper 1 (Th1), Th2, Th17, and regulatory T cells]. However, enhanced or prolonged immune responses can result in autoimmune disorders, which are characterized by lymphocyte-mediated immune responses against self-antigens. Signal transduction of cytokines, which regulate the inflammatory cascades, is dependent on the members of the Janus family of protein kinases. Tyrosine kinase 2 (Tyk2) is associated with receptor subunits of immune-related cytokines, such as type I interferon, interleukin (IL)-6, IL-10, IL-12, and IL-23. Clinical studies on the therapeutic effects and the underlying mechanisms of Tyk2 inhibitors in autoimmune or chronic inflammatory diseases are currently ongoing. This review summarizes the findings of studies examining the role of Tyk2 in immune and/or inflammatory responses using Tyk2-deficient cells and mice.

13.
Exp Hematol ; 105: 10-17, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34780812

RESUMEN

Inflammatory and immune signals are involved in stressed hematopoiesis under myeloablation, infection, chronic inflammation, and aging. These signals also affect malignant pathogenesis, and the dysregulated immune environment which causes the resistance to treatment. On activation, various types of protein tyrosine kinases in the cytoplasm mediate the cascade, leading to the transcription of target genes in the nucleus. Adaptor molecules are commonly defined as proteins that lack enzymatic activity, DNA-binding or receptor functions and possess protein-protein or protein-lipid interaction domains. By binding to specific domains of signaling molecules, adaptor proteins adjust the signaling responses after the ligation of receptors of soluble factors, including cytokines, chemokines, and growth factors, as well as pattern recognition receptors such as toll-like receptors. The signal-transducing adaptor protein (STAP) family regulates various intracellular signaling pathways. These proteins have a pleckstrin homology domain in the N-terminal region and an SRC-homology 2-like domain in the central region, representing typical binding structures as adapter proteins. Following the elucidation of the effects of STAPs on terminally differentiated immune cells, such as macrophages, T cells, mast cells, and basophils, recent findings have indicated the critical roles of STAP-2 in B-cell progenitor cells in marrow under hematopoietic stress and STAP-1 and -2 in BCR-ABL-transduced leukemogenesis. In this review, we focus on the role of STAPs in the bone marrow.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Hematológicas/metabolismo , Hematopoyesis , Fosfoproteínas/metabolismo , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Neoplasias Hematológicas/patología , Humanos , Transducción de Señal
14.
Biol Pharm Bull ; 44(12): 1810-1818, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34853263

RESUMEN

The signal-transducing adaptor protein (STAP) family, including STAP-1 and STAP-2, contributes to a variety of intracellular signaling pathways. The proteins in this family contain typical structures for adaptor proteins, such as Pleckstrin homology in the N-terminal regions and SRC homology 2 domains in the central regions. STAP proteins bind to inhibitor of kappaB kinase complex, breast tumor kinase, signal transducer and activator of transcription 3 (STAT3), and STAT5, during tumorigenesis and inflammatory/immune responses. STAP proteins positively or negatively regulate critical steps in intracellular signaling pathways through individually unique mechanisms. This article reviews the roles of the novel STAP family and the possible therapeutic applications of targeting STAP proteins in cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinogénesis/metabolismo , Neoplasias/metabolismo , Animales , Proteínas Sanguíneas/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Tirosina/metabolismo
15.
Biol Pharm Bull ; 44(12): 1898-1901, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34853275

RESUMEN

Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein involved in inflammatory and immune responses, such as inflammatory bowel disease and allergic responses. In this study, we investigated the role of STAP-2 in the pathogenesis of autoimmune hepatitis. After intravenous injection of concanavalin A (ConA), STAP-2 knock out (KO) mice showed more severe liver necrosis along with substantial lymphocyte infiltration compared to wild type (WT) mice. Serum alanine aminotransferase levels were significantly higher in ConA-injected STAP-2 KO mice than in WT mice. Levels of interferon-γ (IFN-γ), an important factor for liver necrosis, were also significantly increased in sera of STAP-2 KO mice compared to WT mice after ConA injection. Statistically significant upregulation of Fas ligand (FasL) expression was observed in the livers of ConA-injected STAP-2 KO mice compared to WT mice. In accordance with these results, apoptotic signals were facilitated in STAP-2 KO mice compared to WT mice after ConA injection. Correctively, these results suggest that STAP-2 is involved in the pathogenesis of autoimmune hepatitis by regulating the expression of FasL and the production of IFN-γ.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Ligando Fas/metabolismo , Hepatitis Autoinmune/metabolismo , Interferón gamma/metabolismo , Hígado/patología , Animales , Apoptosis , Caspasa 3/metabolismo , Concanavalina A , Modelos Animales de Enfermedad , Femenino , Hígado/metabolismo , Linfocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , Transducción de Señal , Regulación hacia Arriba
16.
Biol Pharm Bull ; 44(11): 1585-1592, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34719635

RESUMEN

Tyrosine kinase 2 (Tyk2) is a member of the Janus family of protein tyrosine kinases (Jaks). Tyk2 associates with interferon (IFN)-α, IFN-ß, interleukin (IL)-6, IL-10, IL-12, and IL-23 receptors and mediates their downstream signaling pathways. Based on our data using Tyk2-deficient mice and cells, Tyk2 plays crucial roles in the differentiation, maintenance, and function of T helper 1 (Th1) and Th17 cells, and its dysregulation may promote autoimmune and/or inflammatory diseases. IFN-α-induced growth inhibition of B lymphocyte progenitors is dependent on Tyk2-mediated signals to regulate death-associated protein (Daxx) nuclear localization and Daxx-promyelocytic leukemia protein interactions. Tyk2-deficient mice show impaired constitutive production of type I IFNs by macrophages under steady-state conditions. When heat-killed Cutibacterium acnes is injected intraperitoneally, Tyk2-deficient mice show less granuloma formation through enhanced prostaglandin E2 and protein kinase A activities, leading to high IL-10 production by macrophages. Thus, Tyk2 is widely involved in the immune and inflammatory response at multiple events; therefore, Tyk2 is likely to be a suitable target for treating patients with autoimmune and/or chronic inflammatory diseases. Clinical trials of Tyk2 inhibitors have shown higher response rates and improved tolerability in the treatment of patients with psoriasis and inflammatory bowel diseases. Taken together, Tyk2 inhibition has great potential for clinical application in the management of a variety of diseases.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Inflamación/tratamiento farmacológico , TYK2 Quinasa/antagonistas & inhibidores , Animales , Enfermedades Autoinmunes/enzimología , Enfermedad Crónica , Humanos , Inflamación/enzimología
17.
Biochem Biophys Res Commun ; 572: 80-85, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34358967

RESUMEN

Signal-transducing adaptor protein (STAP)-2 is one of the STAP family adaptor proteins and ubiquitously expressed in a variety types of cells. Although STAP-2 is required for modification of FcεRI signal transduction in mast cells, other involvement of STAP-2 in mast cell functions is unknown, yet. In the present study, we mainly investigated functional roles of STAP-2 in IL-33-induced mast cell activation. In STAP-2-deficient, but not STAP-1-deficient, mast cells, IL-33-induced IL-6 and TNF-α production was significantly decreased compared with that of wild-type mast cells. In addition, STAP-2-deficiency greatly reduced TLR4-mediated mast cell activation and cytokine production. For the mechanisms, STAP-2 directly binds to IKKα after IL-33 stimulation, leading to elevated NF-κB activity. In conclusion, STAP-2, but not STAP-1, participates in IL-33-induced mast cells activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Interleucina-33/metabolismo , Mastocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Células Cultivadas , Citocinas/biosíntesis , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
18.
Biol Pharm Bull ; 44(7): 895-901, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193686

RESUMEN

Signal-transducing adaptor protein (STAP)-2 is an adaptor molecule involved in regulation of several intracellular signaling events in immune cells. STAP-2 contains a pleckstrin homology domain at the N-terminus, an src homology domain in the central portion and a proline-rich region at the C-terminus. STAP-2 also has a YXXQ motif, which is a potential signal transducer and activator of transcription (STAT)3-binding site. STAP-2 influences the STAT3 and STAT5 activity, integrin-mediated T cell adhesion, chemokine-induced T cell migration, Fas-mediated T cell apoptosis, Toll-like receptor-mediated macrophage functions, macrophage colony-stimulating factor-induced macrophage activation, and the high-affinity immunoglobulin E receptor-mediated mast cell activation. This article reviews the current understanding of roles of the STAP-2 during immune and/or inflammatory responses, and discusses possible therapeutic applications of targeting STAP-2 proteins in immune-related disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Macrófagos/inmunología , Mastocitos/inmunología , Fosfoproteínas/inmunología , Linfocitos T/inmunología , Animales , Humanos , Inflamación/inmunología
20.
Biochem Biophys Res Commun ; 556: 185-191, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33845308

RESUMEN

Chronic myeloid leukemia (CML) is a clonal disease characterized by the presence of the Philadelphia chromosome and its oncogenic product, BCR-ABL, which activates multiple pathways involved in cell survival, growth promotion, and disease progression. We recently reported that signal-transducing adaptor protein 1 (STAP-1) is upregulated in CML stem cells (LSCs) and functions to reduce the apoptosis of CML LSCs by upregulating the STAT5-downstream anti-apoptotic genes. In this study, we demonstrate the detailed molecular interactions among BCR-ABL, STAP-1, and signal transducer and activator of transcription 5 (STAT5). Studies with deletion mutants have revealed that STAP-1 interacts with BCR-ABL and STAT5a through its SH2 and PH domains, respectively, suggesting the possible role of STAP-1 as a scaffold protein. Furthermore, the binding of STAP-1 to BCR-ABL stabilizes the BCR-ABL protein in CML cells. Since STAP-1 is highly expressed in CML cells, we also analyzed the STAP-1 promoter activity using a luciferase reporter construct and found that NFATc1 is involved in activating the STAP-1 promoter and inducing STAP-1 mRNA expression. Our results demonstrate that STAP-1 contributes to the BCR-ABL/STAT5 and BCR-ABL/Ca2+/NFAT signals to induce proliferation and STAP-1 mRNA expression in CML cells, respectively.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular Tumoral , Supervivencia Celular , Proteínas de Fusión bcr-abl/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Factores de Transcripción NFATC/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...