Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 164, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525144

RESUMEN

BACKGROUND: Individual functional modifications shape the ability of wildlife populations to cope with anthropogenic environmental changes. But instead of adaptive response, human-altered environments can generate a succession of deleterious functional changes leading to the extinction of the population. To study how persistent anthropogenic changes impacted local species' population status, we characterised population structure, genetic diversity and individual response of gene expression in the tree frog Hyla orientalis along a gradient of radioactive contamination around the Chernobyl nuclear power plant. RESULTS: We detected lower effective population size in populations most exposed to ionizing radiation in the Chernobyl Exclusion Zone that is not compensated by migrations from surrounding areas. We also highlighted a decreased body condition of frogs living in the most contaminated area, a distinctive transcriptomics signature and stop-gained mutations in genes involved in energy metabolism. While the association with dose will remain correlational until further experiments, a body of evidence suggests the direct or indirect involvement of radiation exposure in these changes. CONCLUSIONS: Despite ongoing migration and lower total dose rates absorbed than at the time of the accident, our results demonstrate that Hyla orientalis specimens living in the Chernobyl Exclusion Zone are still undergoing deleterious changes, emphasizing the long-term impacts of the nuclear disaster.


Asunto(s)
Accidente Nuclear de Chernóbil , Animales , Humanos , Densidad de Población , Animales Salvajes , Radiación Ionizante , Anuros/genética
2.
Environ Pollut ; 330: 121774, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178954

RESUMEN

Radioactive contamination has the potential to cause damage to DNA and other biomolecules. Anthropogenic sources of radioactive contamination include accidents in nuclear power plants, such as the one in Chornobyl in 1986 which caused long-term radioactive pollution. Studies on animals within radioactive zones have provided us with a greater understanding of how wildlife can persevere despite chronic radiation exposure. However, we still know very little about the effects of radiation on the microbial communities in the environment. We examined the impact of ionizing radiation and other environmental factors on the diversity and composition of environmental microbiomes in the wetlands of Chornobyl. We combined detailed field sampling along a gradient of radiation together with 16S rRNA high-throughput metabarcoding. While radiation did not affect the alpha diversity of the microbiomes in sediment, soil, or water, it had a significant effect on the beta diversity in all environment types, indicating that the microbial composition was affected by ionizing radiation. Specifically, we detected several microbial taxa that were more abundant in areas with high radiation levels within the Chornobyl Exclusion Zone, including bacteria and archaea known to be radioresistant. Our results reveal the existence of rich and diverse microbiomes in Chornobyl wetlands, with multiple taxonomic groups that are able to thrive despite the radioactive contamination. These results, together with additional field and laboratory-based approaches examining how microbes cope with ionizing radiation will help to forecast the functionality and re-naturalization dynamics of radiocontaminated environments.


Asunto(s)
Accidente Nuclear de Chernóbil , Microbiota , Exposición a la Radiación , Animales , ARN Ribosómico 16S , Humedales , Radiación Ionizante
3.
Chemosphere ; 315: 137753, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36608893

RESUMEN

Ionizing radiation has the potential to damage organic molecules and decrease the health and survival of wildlife. The accident at the Chornobyl Nuclear Plant (Ukraine, 1986) led to the largest release of radioactive material to the environment. Among the different organs of a vertebrate, the liver plays a crucial role in detoxification processes, and has been used as a biomarker to investigate cellular damage in ecotoxicological research. Here, we examined the impact of the exposure to the current levels of ionizing radiation present in the Chornobyl Exclusion Zone on the liver of Eastern tree frogs (Hyla orientalis). We quantified the area of melanomacrophage cells and morphological variables of hepatocytes, two cell types often used to estimate damage caused by pollutants in vertebrates. First, we investigated whether these hepatic parameters were indicative of frog (individual) condition. Then, we analyzed the effect of individual absorbed dose rates and ambient radiation levels on frog livers. Most of the studied parameters were correlated with individual body condition (a good predictor of amphibian fitness and survival). We did not detect marked morphological lesions in the liver of frogs captured in medium-high radiation environments. The area occupied by melanomacrophages and the morphology of hepatocytes did not change across a gradient of radiocontamination covering two orders of magnitude. Once accounting for body condition and sampling locality, the area of melanomacrophages was lower in areas with high radiation levels. Finally, the area occupied by melanomacrophages was not linked to dorsal skin coloration. Our results indicate that current levels of radiation experienced by tree frogs in Chornobyl do not cause histopathological damage in their liver. These results agree with previous physiological work in the species in the Chornobyl area, and encourage further molecular and physiological research to fully disentangle the current impact of the Chornobyl accident on wildlife.


Asunto(s)
Accidente Nuclear de Chernóbil , Exposición a la Radiación , Animales , Ucrania , Hígado , Radiación Ionizante , Anuros , Animales Salvajes , Dosis de Radiación
4.
Evol Appl ; 15(9): 1469-1479, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36187188

RESUMEN

Human actions are altering ecosystems worldwide. Among human-released pollutants, ionizing radiation arises as a rare but potentially devastating threat to natural systems. The Chornobyl accident (1986) represents the largest release of radioactive material to the environment. Our aim was to examine how exposure to radiation from the Chornobyl accident influences dorsal skin coloration of Eastern tree frog (Hyla orientalis) males sampled across a wide gradient of radioactive contamination in northern Ukraine. We assessed the relationship between skin frog coloration (which can act as a protective mechanism against ionizing radiation), radiation conditions and oxidative stress levels. Skin coloration was darker in localities closest to areas with high radiation levels at the time of the accident, whereas current radiation levels seemed not to influence skin coloration in Chornobyl tree frogs. Tree frogs living within the Chornobyl Exclusion Zone had a remarkably darker dorsal skin coloration than frogs from outside the Zone. The maintenance of dark skin coloration was not linked to physiological costs in terms of frog body condition or oxidative status, and we did not detect short-term changes in frog coloration. Dark coloration is known to protect against different sources of radiation by neutralizing free radicals and reducing DNA damage, and, particularly melanin pigmentation has been proposed as a buffering mechanism against ionizing radiation. Our results suggest that exposure to high levels of ionizing radiation, likely at the time of the accident, may have been selected for darker coloration in Chornobyl tree frogs. Further studies are needed to determine the underlying mechanisms and evolutionary consequences of the patterns found here.

6.
Evol Appl ; 15(2): 203-219, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35233243

RESUMEN

Despite the ubiquity of pollutants in the environment, their long-term ecological consequences are not always clear and still poorly studied. This is the case concerning the radioactive contamination of the environment following the major nuclear accident at the Chernobyl nuclear power plant. Notwithstanding the implications of evolutionary processes on the population status, few studies concern the evolution of organisms chronically exposed to ionizing radiation in the Chernobyl exclusion zone. Here, we examined genetic markers for 19 populations of Eastern tree frog (Hyla orientalis) sampled in the Chernobyl region about thirty years after the nuclear power plant accident to investigate microevolutionary processes ongoing in local populations. Genetic diversity estimated from nuclear and mitochondrial markers showed an absence of genetic erosion and higher mitochondrial diversity in tree frogs from the Chernobyl exclusion zone compared to other European populations. Moreover, the study of haplotype network permitted us to decipher the presence of an independent recent evolutionary history of Chernobyl exclusion zone's Eastern tree frogs caused by an elevated mutation rate compared to other European populations. By fitting to our data a model of haplotype network evolution, we suspected that Eastern tree frog populations in the Chernobyl exclusion zone have a high mitochondrial mutation rate and small effective population sizes. These data suggest that Eastern tree frog populations might offset the impact of deleterious mutations because of their large clutch size, but also question the long-term impact of ionizing radiation on the status of other species living in the Chernobyl exclusion zone.

7.
Sci Rep ; 11(1): 20509, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654841

RESUMEN

Ionizing radiation can damage organic molecules, causing detrimental effects on human and wildlife health. The accident at the Chernobyl nuclear power plant (1986) represents the largest release of radioactive material to the environment. An accurate estimation of the current exposure to radiation in wildlife, often reduced to ambient dose rate assessments, is crucial to understand the long-term impact of radiation on living organisms. Here, we present an evaluation of the sources and variation of current exposure to radiation in breeding Eastern tree frogs (Hyla orientalis) males living in the Chernobyl Exclusion Zone. Total absorbed dose rates in H. orientalis were highly variable, although generally below widely used thresholds considered harmful for animal health. Internal exposure was the main source of absorbed dose rate (81% on average), with 90Sr being the main contributor (78% of total dose rate, on average). These results highlight the importance of assessing both internal and external exposure levels in order to perform a robust evaluation of the exposure to radiation in wildlife. Further studies incorporating life-history, ecological, and evolutionary traits are needed to fully evaluate the effects that these exposure levels can have in amphibians and other taxa inhabiting radio-contaminated environments.


Asunto(s)
Anuros , Accidente Nuclear de Chernóbil , Exposición a la Radiación/estadística & datos numéricos , Radiación Ionizante , Radioisótopos de Estroncio/análisis , Animales , Ecosistema , Masculino , Dosis de Radiación , Ucrania
8.
Front Zool ; 18(1): 33, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187507

RESUMEN

BACKGROUND: Human actions have altered natural ecosystems worldwide. Among the many pollutants released to the environment, ionizing radiation can cause severe damage at different molecular and functional levels. The accident in the Chernobyl Nuclear Power Plant (1986) caused the largest release of ionizing radiation to the environment in human history. Here, we examined the impact of the current exposure to ionizing radiation on blood physiology biomarkers of adult males of the Eastern tree frog (Hyla orientalis) inhabiting within and outside the Chernobyl Exclusion Zone. We measured the levels of eight blood parameters (sodium, potassium, chloride, ionized calcium, total carbon dioxide, glucose, urea nitrogen, and anion gap), physiological markers of homeostasis, as well as of liver and kidney function. RESULTS: Levels of blood physiology biomarkers did not vary in function of the current exposure of tree frogs to ionizing radiation within the Chernobyl Exclusion Zone. Physiological blood levels were similar in frogs inhabiting Chernobyl (both in areas with medium-high or low radiation) than in tree frogs living outside Chernobyl exposed only to background radiation levels. CONCLUSIONS: The observed lack of effects of current radiation levels on blood biomarkers can be a consequence of the low levels of radiation currently experienced by Chernobyl tree frogs, but also to the fact that our sampling was restricted to active breeding males, i.e. potentially healthy adult individuals. Despite the clear absence of effects of current radiation levels on physiological blood parameters in tree frogs, more research covering different life stages and ecological scenarios is still needed to clarify the impact of ionizing radiation on the physiology, ecology, and dynamics of wildlife inhabiting radioactive-contaminated areas.

9.
Glob Chang Biol ; 26(10): 5371-5381, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32835446

RESUMEN

Human activity is changing climatic conditions at an unprecedented rate. The impact of these changes may be especially acute on ectotherms since they have limited capacities to use metabolic heat to maintain their body temperature. An increase in temperature is likely to increase the growth rate of ectothermic animals, and may also induce thermal stress via increased exposure to heat waves. Fast growth and thermal stress are metabolically demanding, and both factors can increase oxidative damage to essential biomolecules, accelerating the rate of ageing. Here, we explore the potential impact of global warming on ectotherm ageing through its effects on reactive oxygen species production, oxidative damage, and telomere shortening, at the individual and intergenerational levels. Most evidence derives primarily from vertebrates, although the concepts are broadly applicable to invertebrates. We also discuss candidate mechanisms that could buffer ectotherms from the potentially negative consequences of climate change on ageing. Finally, we suggest some potential applications of the study of ageing mechanisms for the implementation of conservation actions. We find a clear need for more ecological, biogeographical, and evolutionary studies on the impact of global climate change on patterns of ageing rates in wild populations of ectotherms facing warming conditions. Understanding the impact of warming on animal life histories, and on ageing in particular, needs to be incorporated into the design of measures to preserve biodiversity to improve their effectiveness.


Asunto(s)
Cambio Climático , Calentamiento Global , Envejecimiento , Animales , Humanos , Temperatura , Vertebrados
10.
Sci Rep ; 10(1): 8822, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483233

RESUMEN

The magnitude and ecological impact of climate change varies with latitude. Several recent models have shown that tropical ectotherms face the greatest risk from warming because they currently experience temperatures much closer to their physiological optimum than temperate taxa. Even a small increase in temperature may thus result in steep fitness declines in tropical species but increased fitness in temperate species. This prediction, however, is based on a model that does not account for latitudinal differences in activity periods. Temperate species in particular may often experience considerably higher temperatures than expected during the active season. Here, we integrate data on insect warming tolerance and temperature-dependent development to re-evaluate latitudinal trends in thermal safety margins after accounting for latitudinal trends in insect seasonal activity. Our analyses suggest that temperate and tropical species differ far less in thermal safety margins than commonly assumed, and add to the recent number of studies suggesting that tropical and temperate species might face similar levels of threat from climate change.


Asunto(s)
Cambio Climático , Insectos/fisiología , Estaciones del Año , Aclimatación , Animales , Ecosistema , Clima Tropical
11.
J Anim Ecol ; 89(3): 855-866, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31693168

RESUMEN

Climate change is causing increases in temperature and in the frequency of extreme weather events. Under this scenario, organisms should maintain or develop strategies to cope with environmental fluctuations, such as the capacity to modify growth trajectories. However, altering growth can have negative consequences for organisms' fitness. Here, we investigated the metabolic alterations induced by compensatory growth during the larval development of the common frog (Rana temporaria), quantifying changes in oxidative stress, corticosterone levels and telomere length. We induced compensatory growth responses by exposing frog embryos to cold conditions (i.e. a 'false spring' scenario), which cause a delay in hatching. Once hatched, we reared larvae at two different photoperiods (24:0, representing the natural photoperiod of larvae, and 18:6) to test also for the interactive effects of light on growth responses. Larvae experiencing delayed hatching showed fast compensatory responses and reached larger size at metamorphosis. Larvae shortened their developmental period in response to delayed hatching. Non-permanent light conditions resulted in relaxed growth compared with larvae reared under permanent light conditions, which grew at their natural photoperiod and closer to their maximal rates. Growth responses altered the redox status and corticosterone levels of larvae. These physiological changes were developmental stage-dependent and mainly affected by photoperiod conditions. At catch-up, larvae reared at 18:6 light:dark cycles showed higher antioxidant activities and glucocorticoid secretion. On the contrary, larvae reared at 24:0 developed at higher rates without altering their oxidative status, likely an adaptation to grow under very restricting seasonal conditions at early life. At metamorphosis, compensatory responses induced higher cellular antioxidant activities probably caused by enhanced metabolism. Telomere length remained unaltered by experimental treatments but apparently tended to elongate across larval ontogeny, which would be a first evidence of telomere lengthening across metamorphosis. Under the forecasted increase in extreme climatic events, adjusting growth and developmental rates to the dynamics of environmental fluctuations may be essential for survival, but it can carry metabolic costs and affect later performance. Understanding the implications of such costs will be essential to properly estimate the impact of climate change on wild animals.


Asunto(s)
Anuros , Metamorfosis Biológica , Adaptación Fisiológica , Animales , Larva , Rana temporaria
12.
J Evol Biol ; 31(8): 1216-1226, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29802672

RESUMEN

Fast-growing genotypes living in time-constrained environments are often more prone to predation, suggesting that growth-predation risk trade-offs are important factors maintaining variation in growth along climatic gradients. However, the mechanisms underlying how fast growth increases predation-mediated mortality are not well understood. Here, we investigated if slow-growing, low-latitude individuals have faster escape swimming speed than fast-growing high-latitude individuals using common frog (Rana temporaria) tadpoles from eight populations collected along a 1500 km latitudinal gradient. We measured escape speed in terms of burst and endurance speeds in tadpoles raised in the laboratory at two food levels and in the presence and absence of a predator (Aeshna dragonfly larvae). We did not find any latitudinal trend in escape speed performance. In low food treatments, burst speed was higher in tadpoles reared with predators but did not differ between high-food treatments. Endurance speed, on the contrary, was lower in high-food tadpoles reared with predators and did not differ between treatments at low food levels. Tadpoles reared with predators showed inducible morphology (increased relative body size and tail depth), which had positive effects on speed endurance at low but not at high food levels. Burst speed was positively affected by tail length and tail muscle size in the absence of predators. Our results suggest that escape speed does not trade-off with fast growth along the latitudinal gradient in R. temporaria tadpoles. Instead, escape speed is a plastic trait and strongly influenced by the interaction between resource level and predation risk.


Asunto(s)
Reacción de Fuga/fisiología , Conducta Predatoria , Ranidae/genética , Ranidae/fisiología , Natación/fisiología , Distribución Animal , Animales , Alimentos , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Ranidae/crecimiento & desarrollo , Factores de Riesgo
13.
J Anim Ecol ; 86(1): 128-135, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27779740

RESUMEN

In seasonal environments, modifications in the phenology of life-history events can alter the strength of time constraints experienced by organisms. Offspring can compensate for a change in timing of hatching by modifying their growth and development trajectories. However, intra- and interspecific interactions may affect these compensatory responses, in particular if differences in phenology between cohorts lead to significant priority effects (i.e. the competitive advantage that early-hatching individuals have over late-hatching ones). Here, we conducted a factorial experiment to determine whether intraspecific priority effects can alter compensatory phenotypic responses to hatching delay in a synchronic breeder by rearing moor frog (Rana arvalis) tadpoles in different combinations of phenological delay and food abundance. Tadpoles compensated for the hatching delay by speeding up their development, but only when reared in groups of individuals with identical hatching phenology. In mixed phenology groups, strong competitive effects by non-delayed tadpoles prevented the compensatory responses and delayed larvae metamorphosed later than in single phenology treatments. Non-delayed individuals gained advantage from developing with delayed larvae by increasing their developmental and growth rates as compared to single phenology groups. Food shortage prolonged larval period and reduced mass at metamorphosis in all treatments, but it did not prevent compensatory developmental responses in larvae reared in single phenology groups. This study demonstrates that strong intraspecific priority effects can constrain the compensatory growth and developmental responses to phenological change, and that priority effects can be an important factor explaining the maintenance of synchronic life histories (i.e. explosive breeding) in seasonal environments.


Asunto(s)
Ambiente , Metamorfosis Biológica , Ranidae/crecimiento & desarrollo , Animales , Femenino , Larva , Masculino , Suecia
14.
Ecology ; 97(9): 2470-2478, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27859081

RESUMEN

As organisms living in temperate environments often have only a short time window for growth and reproduction, their life-history strategies are expected to be influenced by these time constraints. Parents may alter the pace of offspring life-history as a response to changes in breeding phenology. However, the responses to changes in time constraints must be balanced with those against other stressors, such as predation, one of the strongest and more ubiquitous selective factors in nature. Here, after experimentally modifying the timing of breeding and hatching in the moor frog (Rana arvalis), we studied how compensatory responses to delayed breeding and hatching affect antipredator strategies in amphibian larvae. We examined the activity patterns, morphology and life-history responses in tadpoles exposed to different combinations of breeding and hatching delays in the presence and absence of predators. We found clear evidence of adaptive transgenerational effects since tadpoles from delayed breeding treatments increased growth and development independently of predation risk. The presence of predators reduced tadpole activity, tadpoles from delayed breeding treatments maintaining lower activity than non-delayed ones also in the absence of predators. Tadpoles reared with predators developed deeper tails and bodies, however, tadpoles from breeding delay treatments had reduced morphological defenses as compared to non-delayed individuals. No significant effects of hatching delay were detected in this study. Our study reveals that amphibian larvae exposed to breeding delay develop compensatory life-history responses even under predation risk, but these responses trade-off with the development of morphological antipredator defenses. These results suggest that under strong time constraints organisms are selected to develop fast growth and development responses, and rely on lower activity rates as their main antipredator defense. Examining how responses to changes in phenology affect species interactions is highly relevant for better understanding ecological responses to climate change.


Asunto(s)
Cruzamiento , Conducta Predatoria , Ranidae/fisiología , Animales , Anuros , Larva
15.
Evol Appl ; 9(3): 471-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26989438

RESUMEN

Accurate predictions regarding how climate change affects species and populations are crucial for the development of effective conservation measures. However, models forecasting the impact of climate change on natural environments do not often consider the geographic variation of an organism's life history. We examined variation in developmental plasticity to changing temperature in the pool frog (Pelophylax lessonae) across its distribution by studying populations from central areas (Poland), edge populations (Latvia) and northern marginal populations (Sweden). Relative to central and edge populations, northern populations experience lower and less variable temperature and fewer episodes of warm weather during larval development. Plasticity in larval life-history traits was highest at the northern range margin: larvae from marginal populations shortened larval period and increased growth rate more than larvae from central and edge populations when reared at high temperature. Maintaining high growth and development under the scarce spells of warm weather is likely adaptive for high-latitude populations. The detection of high levels of developmental plasticity in isolated, marginal populations suggests that they may be better able to respond to the temperature regimes expected under climate change than often predicted, reflecting the need to incorporate geographic variation in life-history traits into models forecasting responses to environmental change.

17.
Ecology ; 95(6): 1520-30, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25039217

RESUMEN

Invasive alien predators can impose strong selection on native prey populations and induce rapid evolutionary change in the invaded communities. However, studies on evolutionary responses to invasive predators are often complicated by the lack of replicate populations differing in coexistence time with the predator, which would allow the determination of how prey traits change during the invasion. The red swamp crayfish Procambarus clarkii has invaded many freshwater areas worldwide, with negative impacts for native fauna. Here, we examined how coexistence time shapes antipredator responses of the Iberian waterfrog (Pelophylax perezi) to the invasive crayfish by raising tadpoles from five populations differing in historical exposure to P. clarkii (30 years, 20 years, or no coexistence). Tadpoles from non-invaded populations responded to the presence of P. clarkii with behavioral plasticity (reduced activity), whereas long-term invaded populations showed canalized antipredator behavior (constant low activity level). Tadpoles from one of the long-term invaded populations responded to the crayfish with inducible morphological defenses (deeper tails), reflecting the use of both constitutive and inducible antipredator defenses against the exotic predator by this population. Our results suggest that, while naive P. perezi populations responded behaviorally to P. clarkii, the strong predation pressure imposed by the crayfish has induced the evolution of qualitatively different antipredator defenses in populations with longer coexistence time. These responses suggest that strong selection by invasive predators may drive rapid evolutionary change in invaded communities. Examining responses of prey species to biological invasions using multiple populations will help us better forecast the impact of invasive predators in natural communities.


Asunto(s)
Astacoidea/fisiología , Evolución Biológica , Especies Introducidas , Ranidae/fisiología , Animales , Conducta Animal , Ecosistema , Larva , Ranidae/genética , Factores de Tiempo
18.
Ecol Evol ; 4(8): 1491-503, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24834343

RESUMEN

Predator-induced phenotypic plasticity has been widely documented in response to native predators, but studies examining the extent to which prey can respond to exotic invasive predators are scarce. As native prey often do not share a long evolutionary history with invasive predators, they may lack defenses against them. This can lead to population declines and even extinctions, making exotic predators a serious threat to biodiversity. Here, in a community-wide study, we examined the morphological and life-history responses of anuran larvae reared with the invasive red swamp crayfish, Procambarus clarkii, feeding on conspecific tadpoles. We reared tadpoles of nine species until metamorphosis and examined responses in terms of larval morphology, growth, and development, as well as their degree of phenotypic integration. These responses were compared with the ones developed in the presence of a native predator, the larval dragonfly Aeshna sp., also feeding on tadpoles. Eight of the nine species altered their morphology or life history when reared with the fed dragonfly, but only four when reared with the fed crayfish, suggesting among-species variation in the ability to respond to a novel predator. While morphological defenses were generally similar across species (deeper tails) and almost exclusively elicited in the presence of the fed dragonfly, life-history responses were very variable and commonly elicited in the presence of the invasive crayfish. Phenotypes induced in the presence of dragonfly were more integrated than in crayfish presence. The lack of response to the presence of the fed crayfish in five of the study species suggests higher risk of local extinction and ultimately reduced diversity of the invaded amphibian communities. Understanding how native prey species vary in their responses to invasive predators is important in predicting the impacts caused by newly established predator-prey interactions following biological invasions.

19.
Oecologia ; 174(1): 131-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23996230

RESUMEN

Organisms normally grow at a sub-maximal rate. After experiencing a period of arrested growth, individuals often show compensatory growth responses by modifying their life-history, behaviour and physiology. However, the strength of compensatory responses may vary across broad geographic scales as populations differ in their exposition to varying time constraints. We examined differences in compensatory growth strategies in common frog (Rana temporaria) populations from southern and northern Sweden. Tadpoles from four populations were reared in the laboratory and exposed to low temperature to evaluate the patterns and mechanisms of compensatory growth responses. We determined tadpoles' growth rate, food intake and growth efficiency during the compensation period. In the absence of arrested growth conditions, tadpoles from all the populations showed similar (size-corrected) growth rates, food intake and growth efficiency. After being exposed to low temperature for 1 week, only larvae from the northern populations increased growth rates by increasing both food intake and growth efficiency. These geographic differences in compensatory growth mechanisms suggest that the strategies for recovering after a period of growth deprivation may depend on the strength of time constraints faced by the populations. Due to the costs of fast growth, only populations exposed to the strong time constraints are prone to develop fast recovering strategies in order to metamorphose before conditions deteriorate. Understanding how organisms balance the cost and benefits of growth strategies may help in forecasting the impact of fluctuating environmental conditions on life-history strategies of populations likely to be exposed to increasing environmental variation in the future.


Asunto(s)
Ambiente , Rana temporaria/crecimiento & desarrollo , Animales , Frío , Larva/crecimiento & desarrollo , Metamorfosis Biológica , Suecia , Factores de Tiempo
20.
Oecologia ; 171(4): 873-81, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22976774

RESUMEN

Seasonal time constraints can pose strong selection on life histories. Time-constrained animals should prioritise fast development over predation risk to avoid unfavourable growing conditions. However, changes in phenology could alter the balance between anti-predator and developmental needs. We studied variation of anti-predator strategies in common frog (Rana temporaria) tadpoles in four populations from the two extremes of a latitudinal gradient across Sweden. We examined, under common conditions in the laboratory, the anti-predator responses and life histories of tadpoles raised with predatory Aeshna dragonfly larvae in two consecutive years with a difference of 20 days in breeding time in the north, but no difference in breeding time in the nouth. In a year with late breeding, northern tadpoles did not modify their behaviour and morphology in the presence of predators, and metamorphosed faster and smaller than tadpoles born in a year with early breeding. In the year with early breeding, northern tadpoles showed a completely different anti-predator strategy by reducing activity and developing morphological defences in the presence of predators. We discuss the possible mechanisms that could activate these responses (likely a form of environmentally-mediated parental effect). To our knowledge, this is the first study to show that a vertebrate modifies the anti-predator strategy of its offspring in response to natural variation in reproductive phenology, which highlights the need to consider phenology in studies of life-history evolution.


Asunto(s)
Metamorfosis Biológica/fisiología , Rana temporaria/fisiología , Estaciones del Año , Conducta Sexual Animal/fisiología , Análisis de Varianza , Animales , Insectos/fisiología , Larva/fisiología , Actividad Motora/fisiología , Observación , Conducta Predatoria/fisiología , Suecia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...