Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Oncogene ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600165

RESUMEN

Triple-negative breast cancer (TNBC) is a very aggressive and heterogeneous group of tumors. In order to develop effective therapeutic strategies, it is therefore essential to identify the subtype-specific molecular mechanisms underlying disease progression and resistance to chemotherapy. TNBC cells are highly dependent on exogenous cystine, provided by overexpression of the cystine/glutamate antiporter SLC7A11/xCT, to fuel glutathione synthesis and promote an oxidative stress response consistent with their high metabolic demands. Here we show that TNBC cells of the mesenchymal stem-like subtype (MSL) utilize forced cystine uptake to induce activation of the transcription factor NRF2 and promote a glutathione-independent mechanism to defend against oxidative stress. Mechanistically, we demonstrate that NRF2 activation is mediated by direct cysteinylation of the inhibitor KEAP1. Furthermore, we show that cystine-mediated NRF2 activation induces the expression of important genes involved in oxidative stress response, but also in epithelial-to-mesenchymal transition and stem-like phenotype. Remarkably, in survival analysis, four upregulated genes (OSGIN1, RGS17, SRXN1, AKR1B10) are negative prognostic markers for TNBC. Finally, expression of exogenous OSGIN1, similarly to expression of exogenous NRF2, can prevent cystine depletion-dependent death of MSL TNBC cells. The results suggest that the cystine/NRF2/OSGIN1 axis is a potential target for effective treatment of MSL TNBCs.

2.
Thromb Haemost ; 124(2): 122-134, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37669782

RESUMEN

BACKGROUND: The C-type lectin receptor CD93 is a single pass type I transmembrane glycoprotein involved in inflammation, immunity, and angiogenesis. This study investigates the role of CD93 in platelet function. CD93 knockout (KO) mice and wild-type (WT) controls were compared in this study. METHODS: Platelet activation and aggregation were investigated by flow cytometry and light transmission aggregometry, respectively. Protein expression and phosphorylation were analyzed by immunoblotting. Subcellular localization of membrane receptors was investigated by wide-field and confocal microscopy. RESULTS: The lack of CD93 in mice was not associated to any evident bleeding defect and no alterations of platelet activation were observed upon stimulation with thromboxane A2 analogue and convulxin. Conversely, platelet aggregation induced by stimulation of the thrombin receptor PAR4 was significantly reduced in the absence of CD93. This defect was associated with a significant reduction of α-granule secretion, integrin αIIbß3 activation, and protein kinase C (PKC) stimulation. Resting WT and CD93-deficient platelets expressed comparable amounts of PAR4. However, upon stimulation with a PAR4 activating peptide, a more pronounced clearance of PAR4 from the platelet surface was observed in CD93-deficient platelets compared with WT controls. Confocal microscopy analysis revealed a massive movement of PAR4 in cytosolic compartments of activated platelets lacking CD93. Accordingly, platelet desensitization following PAR4 stimulation was more pronounced in CD93 KO platelets compared with WT controls. CONCLUSION: These results demonstrate that CD93 supports platelet activation triggered by PAR4 stimulation and is required to stabilize the expression of the thrombin receptor on the cell surface.


Asunto(s)
Receptores de Trombina , Trombina , Animales , Ratones , Plaquetas/metabolismo , Activación Plaquetaria , Agregación Plaquetaria , Receptor PAR-1/metabolismo , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Trombina/metabolismo
3.
FASEB J ; 37(4): e22894, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36961390

RESUMEN

Regulation of vascular permeability to plasma is essential for tissue and organ homeostasis and is mediated by endothelial cell-to-cell junctions that tightly regulate the trafficking of molecules between blood and tissue. The single-pass transmembrane glycoprotein CD93 is upregulated in endothelial cells during angiogenesis and controls cytoskeletal dynamics. However, its role in maintaining homeostasis by regulating endothelial barrier function has not been elucidated yet. Here, we demonstrate that CD93 interacts with vascular endothelial (VE)-cadherin and limits its phosphorylation and turnover. CD93 deficiency in vitro and in vivo induces phosphorylation of VE-cadherin under basal conditions, displacing it from endothelial cell-cell contacts. Consistent with this, endothelial junctions are defective in CD93-/- mice, and the blood-brain barrier permeability is enhanced. Mechanistically, CD93 regulates VE-cadherin phosphorylation and turnover at endothelial junctions through the Rho/Rho kinase-dependent pathway. In conclusion, our results identify CD93 as a key regulator of VE-cadherin stability at endothelial junctions, opening up possibilities for therapeutic strategies directed to control vascular permeability.


Asunto(s)
Cadherinas , Células Endoteliales , Animales , Ratones , Fosforilación , Células Endoteliales/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Permeabilidad Capilar/fisiología , Endotelio Vascular/metabolismo , Células Cultivadas , Uniones Adherentes/metabolismo
4.
Int J Biol Macromol ; 224: 453-464, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265539

RESUMEN

Blocking the signaling activated by the plasma membrane receptor CD93 has recently been demonstrated a useful tool in antiangiogenic treatment and oncotherapy. In the proliferating endothelium, CD93 regulates cell adhesion, migration, and vascular maturation, yet it is unclear how CD93 interacts with the extracellular matrix activating signaling pathways involved in the vascular remodeling. Here for the first time we show that in endothelial cells CD93 is structured as a dimer and that this oligomeric form is physiologically instrumental for the binding of CD93 to its ligand Multimerin-2. Crystallographic X-ray analysis of recombinant CD93 reveals the crucial role played by the C-type lectin-like and sushi-like domains in arranging as an antiparallel dimer to achieve a functional binding state, providing key information for the future design of new drugs able to hamper CD93 function in neovascular pathologies.


Asunto(s)
Células Endoteliales , Glicoproteínas de Membrana , Células Endoteliales/metabolismo , Glicoproteínas de Membrana/metabolismo , Lectinas Tipo C/metabolismo , Dimerización
5.
Front Bioinform ; 2: 891553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353214

RESUMEN

The transmembrane glycoprotein CD93 has been identified as a potential new target to inhibit tumor angiogenesis. Recently, Multimerin-2 (MMRN2), a pan-endothelial extracellular matrix protein, has been identified as a ligand for CD93, but the interaction mechanism between these two proteins is yet to be studied. In this article, we aim to investigate the structural and functional effects of induced mutations on the binding domain of CD93 to MMRN2. Starting from experimental data, we assessed how specific mutations in the C-type lectin-like domain (CTLD) affect the binding interaction profile. We described a four-step workflow in order to predict the effects of variations on the inter-residue interaction network at the PPI, based on evolutionary information, complex network metrics, and energetic affinity. We showed that the application of computational approaches, combined with experimental data, allowed us to gain more in-depth molecular insights into the CD93-MMRN2 interaction, offering a platform for developing innovative therapeutics able to target these molecules and block their interaction. This comprehensive molecular insight might prove useful in drug design in cancer therapy.

6.
ChemMedChem ; 17(24): e202200456, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36194001

RESUMEN

The glycogen synthase kinase 3ß (GSK-3ß) is a ubiquitous enzyme that is a validated target for the development of potential therapeutics useful in several diseases including retinal degeneration. Aiming at developing an innovative class of allosteric inhibitors of GSK-3ß potentially useful for retinal degeneration, we explored the class of squaramides. The developed compounds (6 a-l) were obtained through a nontoxic one-pot synthetic protocol, which employs low-cost goods and avoids any purification step. Ethanol was used as the reaction solvent, simultaneously allowing the pure reaction products' recovery (by precipitation). Out of this set of squaramides, 6 j stood out, from computational and enzymatic converging data, as an ATP non-competitive inhibitor of GSK-3ß of micromolar potency. When engaged in cellular studies using retinal pigment epithelial cells (ARPE-19) transfected with a luciferase reporter gene under the control of T-cell factor/lymphoid enhancer factor (TCF/LEF) binding sites, 6 j was able to dose-dependently induce ß-catenin nuclear accumulation, as shown by the increased luciferase activity at a concentration of 2.5 µM.


Asunto(s)
Células Epiteliales , Glucógeno Sintasa Quinasa 3 beta , Quinina , Degeneración Retiniana , Factores de Transcripción TCF , Humanos , beta Catenina/metabolismo , Células Epiteliales/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Luciferasas/metabolismo , Transducción de Señal , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/metabolismo , Quinina/análogos & derivados , Quinina/síntesis química , Epitelio Pigmentado de la Retina
7.
FASEB J ; 36(7): e22401, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35726676

RESUMEN

During skeletal myogenesis, the zinc-finger transcription factors SNAI1 and SNAI2, are expressed in proliferating myoblasts and regulate the transition to terminally differentiated myotubes while repressing pro-differentiation genes. Here, we demonstrate that SNAI1 is upregulated in vivo during the early phase of muscle regeneration induced by bupivacaine injury. Using shRNA-mediated gene silencing in C2C12 myoblasts and whole-transcriptome microarray analysis, we identified a collection of genes belonging to the endoplasmic reticulum (ER) stress pathway whose expression, induced by myogenic differentiation, was upregulated in absence of SNAI1. Among these, key ER stress genes, such as Atf3, Ddit3/Chop, Hspa5/Bip, and Fgf21, a myokine involved in muscle differentiation, were strongly upregulated. Furthermore, by promoter mutant analysis and Chromatin immune precipitation assay, we demonstrated that SNAI1 represses Fgf21 and Atf3 in proliferating myoblasts by directly binding to multiple E boxes in their respective promoter regions. Together, these data describe a new regulatory mechanism of myogenic differentiation involving the direct repressive action of SNAI1 on ER stress and Fgf21 expression, ultimately contributing to maintaining the proliferative and undifferentiated state of myoblasts.


Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Transcripción Activador 3/metabolismo , Diferenciación Celular , Línea Celular , Factores de Crecimiento de Fibroblastos , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiología , Regiones Promotoras Genéticas/genética , Regulación hacia Arriba
8.
Chembiochem ; 23(1): e202100449, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34647400

RESUMEN

The use of light-responsive proteins to control both living or synthetic cells, is at the core of the expanding fields of optogenetics and synthetic biology. It is thus apparent that a richer reaction toolbox for the preparation of such systems is of fundamental importance. Here, we provide a proof-of-principle demonstration that Morita-Baylis-Hillman adducts can be employed to perform a facile site-specific, irreversible and diastereoselective click-functionalization of a lysine residue buried into a lipophilic binding pocket and yielding an unnatural chromophore with an extended π-system. In doing so we effectively open the path to the in vitro preparation of a library of synthetic proteins structurally reminiscent of xanthopsin eubacterial photoreceptors. We argue that such a library, made of variable unnatural chromophores inserted in an easy-to-mutate and crystallize retinoic acid transporter, significantly expand the scope of the recently introduced rhodopsin mimics as both optogenetic and "lab-on-a-molecule" tools.


Asunto(s)
Receptores de Ácido Retinoico/metabolismo , Rodopsina/metabolismo , Química Clic , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Receptores de Ácido Retinoico/química , Rodopsina/química , Estereoisomerismo
9.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830297

RESUMEN

During angiogenesis, cell adhesion molecules expressed on the endothelial cell surface promote the growth and survival of newly forming vessels. Hence, elucidation of the signaling pathways activated by cell-to-matrix adhesion may assist in the discovery of new targets to be used in antiangiogenic therapy. In proliferating endothelial cells, the single-pass transmembrane glycoprotein CD93 has recently emerged as an important endothelial cell adhesion molecule regulating vascular maturation. In this study, we unveil a signaling pathway triggered by CD93 that regulates actin cytoskeletal dynamics responsible of endothelial cell adhesion. We show that the Src-dependent phosphorylation of CD93 and the adaptor protein Cbl leads to the recruitment of Crk, which works as a downstream integrator in the CD93-mediated signaling. Moreover, confocal microscopy analysis of FRET-based biosensors shows that CD93 drives the coordinated activation of Rac1 and RhoA at the cell edge of spreading cells, thus promoting the establishment of cell polarity and adhesion required for cell motility.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Transducción de Señal/genética , Proteína de Unión al GTP rhoA/metabolismo , Adhesión Celular/genética , Moléculas de Adhesión Celular/genética , Polaridad Celular/genética , Células Cultivadas , Humanos , Glicoproteínas de Membrana/genética , Fosforilación/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteínas Proto-Oncogénicas c-crk/metabolismo , Interferencia de ARN , Receptores de Complemento/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Familia-src Quinasas/metabolismo
10.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445590

RESUMEN

Leucine-rich a-2-glycoprotein 1 (LRG1) is a candidate therapeutic target for treating the neovascular form of age-related macular degeneration (nvAMD). In this study we examined the expression of LRG1 in eyes of nvAMD patients. Choroidal neovascular membranes (CNVMs) from patients who underwent submacular surgery for retinal pigment epithelium-choroid graft transplantation were collected from 5 nvAMD patients without any prior intravitreal anti-VEGF injection, and from six patients who received intravitreal anti-VEGF injections before surgery. As controls free of nvAMD, retina sections were obtained from the eyes resected from a patient with lacrimal sac tumor and from a patient with neuroblastoma. CNVMs were immunostained for CD34, LRG1, and α-smooth muscle actin (α-SMA). Aqueous humor samples were collected from 58 untreated-naïve nvAMD patients prior to the intravitreal injection of anti-VEGF and 51 age-matched cataract control patients, and LRG1 concentration was measured by ELISA. The level of LRG1 immunostaining is frequently high in both the endothelial cells of the blood vessels, and myofibroblasts in the surrounding tissue of CNVMs of treatment-naïve nvAMD patients. Furthermore, the average concentration of LRG1 was significantly higher in the aqueous humor of nvAMD patients than in controls. These observations provide a strong experimental basis and scientific rationale for the progression of a therapeutic anti-LRG1 monoclonal antibody into clinical trials with patients with nvAMD.


Asunto(s)
Neovascularización Coroidal/diagnóstico , Ojo/patología , Glicoproteínas/metabolismo , Degeneración Macular/diagnóstico , Factores de Edad , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Neovascularización Coroidal/metabolismo , Ojo/metabolismo , Femenino , Humanos , Degeneración Macular/metabolismo , Masculino , Persona de Mediana Edad
11.
Matrix Biol ; 99: 1-17, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34062268

RESUMEN

Endothelial cell migration is essential to angiogenesis, enabling the outgrowth of new blood vessels both in physiological and pathological contexts. Migration requires the activation of several signaling pathways, the elucidation of which expands the opportunity to develop new drugs to be used in antiangiogenic therapy. In the proliferating endothelium, the interaction between the transmembrane glycoprotein CD93 and the extracellular matrix activates signaling pathways that regulate cell adhesion, migration, and vascular maturation. Here we identify a pathway, comprising CD93, the adaptor proteins Cbl and Crk, and the small GTPases Rac1, Cdc42, and RhoA, which we propose acts as a regulator of cytoskeletal movements responsible for endothelial cell migration. In this framework, phosphorylation of Cbl on tyrosine 774 leads to the interaction with Crk, which acts as a downstream integrator in the CD93-mediated signaling regulating cell polarity and migration. Moreover, confocal microscopy analyses of GTPase biosensors show that CD93 drives coordinated activation of Rho-proteins at the cell edge of migratory endothelial cells. In conclusion, together with the demonstration of the key contribution of CD93 to the migratory process in living cells, these findings suggest that the signaling triggered by CD93 converges to the activation and modulation of the Rho GTPase signaling pathways regulating cell dynamics.


Asunto(s)
Células Endoteliales , Proteínas de Unión al GTP Monoméricas , Adhesión Celular , Movimiento Celular , Células Endoteliales/metabolismo , Lectinas Tipo C , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
12.
Biomolecules ; 11(5)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925706

RESUMEN

Bile acids (BAs) are hydroxylated steroids derived from cholesterol that act at the intestinal level to facilitate the absorption of several nutrients and also play a role as signaling molecules. In the liver of various vertebrates, the trafficking of BAs is mediated by bile acid-binding proteins (L-BABPs). The ability to host hydrophobic or amphipathic molecules makes BABPs suitable for the distribution of a variety of physiological and exogenous substances. Thus, BABPs have been proposed as drug carriers, and more recently, they have also been employed to develop innovative nanotechnology and biotechnology systems. Here, we report an efficient protocol for the production, purification, and crystallization of chicken liver BABP (cL-BABP). By means of target expression as His6-tag cL-BABP, we obtained a large amount of pure and homogeneous proteins through a simple purification procedure relying on affinity chromatography. The recombinant cL-BABP showed a raised propensity to crystallize, allowing us to obtain its structure at high resolution and, in turn, assess the structural conservation of the recombinant cL-BABP with respect to the liver-extracted protein. The results support the use of recombinant cL-BABP for the development of drug carriers, nanotechnologies, and innovative synthetic photoswitch systems.


Asunto(s)
Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/farmacología , Sistemas de Liberación de Medicamentos/métodos , Glicoproteínas de Membrana/aislamiento & purificación , Glicoproteínas de Membrana/farmacología , Secuencia de Aminoácidos/genética , Animales , Ácidos y Sales Biliares/metabolismo , Sitios de Unión/fisiología , Proteínas Portadoras/metabolismo , Pollos , Ácido Cólico/análisis , Ácido Cólico/química , Ácido Cólico/metabolismo , Cristalografía por Rayos X/métodos , Hígado/metabolismo , Hígado/patología , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Unión Proteica/fisiología , Proteínas Recombinantes/metabolismo
13.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530326

RESUMEN

ApreciseKUre is a multi-purpose digital platform facilitating data collection, integration and analysis for patients affected by Alkaptonuria (AKU), an ultra-rare autosomal recessive genetic disease. It includes genetic, biochemical, histopathological, clinical, therapeutic resources and quality of life scores that can be shared among registered researchers and clinicians in order to create a Precision Medicine Ecosystem (PME). The combination of machine learning application to analyse and re-interpret data available in the ApreciseKUre shows the potential direct benefits to achieve patient stratification and the consequent tailoring of care and treatments to a specific subgroup of patients. In this study, we have developed a tool able to investigate the most suitable treatment for AKU patients in accordance with their Quality of Life scores, which indicates changes in health status before/after the assumption of a specific class of drugs. This fact highlights the necessity of development of patient databases for rare diseases, like ApreciseKUre. We believe this is not limited to the study of AKU, but it represents a proof of principle study that could be applied to other rare diseases, allowing data management, analysis, and interpretation.


Asunto(s)
Alcaptonuria/terapia , Aprendizaje Automático , Medicina de Precisión/métodos , Algoritmos , Alcaptonuria/diagnóstico , Alcaptonuria/etiología , Bases de Datos Factuales , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Modelos Teóricos , Calidad de Vida
14.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435325

RESUMEN

Oxidative stress plays a key role in the pathophysiology of retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy, which are the major causes of irreversible blindness in developed countries. An excess of reactive oxygen species (ROS) can directly cause functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells, and retinal ganglion cells. Antioxidants may represent a preventive/therapeutic strategy and reduce the risk of progression of AMD. Among antioxidants, N-acetyl-L-cysteine (NAC) is widely studied and has been proposed to have therapeutic benefit in treating AMD by mitigating oxidative damage in RPE. Here, we demonstrate that N-acetyl-L-cysteine ethyl ester (NACET), a lipophilic cell-permeable cysteine derivative, increases the viability in oxidative stressed RPE cells more efficiently than NAC by reacting directly and more rapidly with oxidizing agents, and that NACET, but not NAC, pretreatment predisposes RPE cells to oxidative stress resistance and increases the intracellular reduced glutathione (GSH) pool available to act as natural antioxidant defense. Moreover, we demonstrate the ability of NACET to increase GSH levels in rats' eyes after oral administration. In conclusion, even if experiments in AMD animal models are still needed, our data suggest that NACET may play an important role in preventing and treating retinal diseases associated with oxidative stress, and may represent a valid and more efficient alternative to NAC in therapeutic protocols in which NAC has already shown promising results.


Asunto(s)
Acetilcisteína/farmacología , Antioxidantes/farmacología , Cisteína/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Acetilcisteína/análogos & derivados , Animales , Antioxidantes/química , Línea Celular , Cisteína/química , Cisteína/farmacología , Humanos , Masculino , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo
15.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33023063

RESUMEN

We identified and compared secreted microRNA (miRNA) expression in aqueous humor (AH) and plasma samples among patients with: type 2 diabetes mellitus (T2D) complicated by non-proliferative diabetic retinopathy (DR) associated with diabetic macular edema (DME) (DME group: 12 patients); T2D patients without DR (D group: 8 patients); and non-diabetic patients (CTR group: 10 patients). Individual patient AH samples from five subjects in each group were profiled on TaqMan Low Density MicroRNA Array Cards. Differentially expressed miRNAs identified from profiling were then validated in single assay for all subjects. The miRNAs validated in AH were then evaluated in single assay in plasma. Gene Ontology (GO) analysis was conducted. From AH profiling, 119 mature miRNAs were detected: 86 in the DME group, 113 in the D group and 107 in the CTR group. miRNA underexpression in the DME group was confirmed in single assay for let-7c-5p, miR-200b-3p, miR-199a-3p and miR-365-3p. Of these four, miR-199a-3p and miR-365-3p were downregulated also in the plasma of the DME group. GO highlighted 54 validated target genes of miR-199a-3p, miR-200b-3p and miR-365-3p potentially implied in DME pathogenesis. Although more studies are needed, miR-200b-3p, let-7c-5p, miR-365-3p and miR-199a-3p represent interesting molecules in the study of DME pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Retinopatía Diabética/genética , Edema Macular/genética , MicroARNs/genética , Anciano , Anciano de 80 o más Años , Humor Acuoso/metabolismo , Diabetes Mellitus Tipo 2/patología , Retinopatía Diabética/patología , Femenino , Regulación de la Expresión Génica/genética , Humanos , Edema Macular/patología , Masculino , Persona de Mediana Edad
16.
Invest Ophthalmol Vis Sci ; 61(8): 34, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32716502

RESUMEN

Purpose: This work was aimed to further characterize cells of idiopathic epiretinal membranes (iERMs). We wanted to determine the contribution of 90-kDa heat shock protein (HSP90) to sustain the transforming growth factor-ß (TGF-ß)-mediated signal transduction pathway in iERM. Methods: Immunofluorescence and confocal microscopy were carried out on deplasticized sections from 36 epiretinal membranes processed for electron microscopy and on frozen sections from five additional samples with antibodies against α-smooth muscle actin (αSMA), vimentin, glial fibrillary acidic protein (GFAP), SMAD2, HSP90α, type-II TGF-ß1 receptor (TßRII), type-I collagen, and type-IV collagen. In addition, Müller MIO-M1 cells were transfected with HSP90 and challenged with TGF-ß1. Results: Double and triple labeling experiments showed that a variable number of TßRII+ cells were present in 94.1% of tested iERMs and they were mostly GFAP-/αSMA+/vimentin+/HSP90α+. In almost half of the cases these cells contained type-I collagen, suggesting their involvement in matrix deposition. HSP90 overexpressing MIO-M1 cells challenged with TGF-ß1 showed increased levels of TßRII, SMAD2, SMAD3, and phosphor-SMAD2. Nuclear SMAD2 staining could be observed in HSP90α+ cells on frozen sections of iERMs. Conclusions: Cells in iERMs that express TßRII are also HSP90α+ and show the antigenic profile of myofibroblast-like cells as they are GFAP-/αSMA+/vimentin+. HSP90α-overexpressing MIO-M1 cells challenged with TGF-ß1 showed an increased activation of the SMAD pathway implying that HSP90α might play a role in sustaining the TGF-ß1-induced fibrotic response of iERM cells.


Asunto(s)
Células Ependimogliales/metabolismo , Membrana Epirretinal , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células Ependimogliales/patología , Membrana Epirretinal/metabolismo , Membrana Epirretinal/patología , Fibrosis/metabolismo , Humanos , Transducción de Señal
17.
Invest Ophthalmol Vis Sci ; 61(8): 30, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32697305

RESUMEN

Purpose: The purpose of this study was to investigate the involvement of CD93 and Multimerin-2 in three choroidal neovascularization (CNV) models and to evaluate their contribution in the neovascular progression of age-related macular degeneration (AMD). Methods: Choroidal neovascular membranes collected during surgery from AMD patients were analyzed by microscopy methods. Laser-induced CNV mouse models and choroid sprouting assays (CSAs) were carried out using the CD93 knockout mouse model. An original ex vivo CSA of vascular angiogenesis, employing choroid tissues isolated from human donors, was developed. Results: In contrast to healthy choroid endothelium, hyperproliferative choroidal endothelial cells (ECs) of AMD patients expressed high levels of CD93, and Multimerin-2 was abundantly deposited along the choroidal neovasculature. CD93 knockout mice showed a significant reduced neovascularization after laser photocoagulation, and their choroidal ECs displayed a decreased ability to produce sprouts in ex vivo angiogenesis assays. Moreover, the presence of an antibody able to hamper the CD93/Multimerin-2 interaction reduced vascular sprouting in the human CSA. Conclusions: Our results demonstrate that CD93 and its interaction with Multimerin-2 play an important role in pathological vascularization of the choroid, disclosing new possibilities for therapeutic intervention to neovascular AMD.


Asunto(s)
Antígenos de Superficie/metabolismo , Neovascularización Coroidal/metabolismo , Células Endoteliales/metabolismo , Degeneración Macular/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Inhibidores de la Angiogénesis/inmunología , Animales , Coroides/irrigación sanguínea , Coroides/patología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Degeneración Macular/patología , Ratones , Ratones Noqueados , Modelos Biológicos
18.
Cell Commun Signal ; 17(1): 55, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138217

RESUMEN

BACKGROUND: In the endothelium, the single-pass membrane protein CD93, through its interaction with the extracellular matrix protein Multimerin-2, activates signaling pathways that are critical for vascular development and angiogenesis. Trafficking of adhesion molecules through endosomal compartments modulates their signaling output. However, the mechanistic basis coordinating CD93 recycling and its implications for endothelial cell (EC) function remain elusive. METHODS: Human umbilical vein ECs (HUVECs) and human dermal blood ECs (HDBEC) were used in this study. Fluorescence confocal microscopy was employed to follow CD93 retrieval, recycling, and protein colocalization in spreading cells. To better define CD93 trafficking, drug treatments and transfected chimeric wild type and mutant CD93 proteins were used. The scratch assay was used to evaluate cell migration. Gene silencing strategies, flow citometry, and quantification of migratory capability were used to determine the role of Rab5c during CD93 recycling to the cell surface. RESULTS: Here, we identify the recycling pathway of CD93 following EC adhesion and migration. We show that the cytoplasmic domain of CD93, by its interaction with Moesin and F-actin, is instrumental for CD93 retrieval in adhering and migrating cells and that aberrant endosomal trafficking of CD93 prevents its localization at the leading edge of migration. Moreover, the small GTPase Rab5c turns out to be a key component of the molecular machinery that is able to drive CD93 recycling to the EC surface. Finally, in the Rab5c endosomal compartment CD93 forms a complex with Multimerin-2 and active ß1 integrin, which is recycled back to the basolaterally-polarized cell surface by clathrin-independent endocytosis. CONCLUSIONS: Our findings, focusing on the pro-angiogenic receptor CD93, unveil the mechanisms of its polarized trafficking during EC adhesion and migration, opening novel therapeutic opportunities for angiogenic diseases.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Adhesión Celular , Movimiento Celular , Integrina beta1/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos
19.
Int J Mol Sci ; 19(11)2018 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-30373226

RESUMEN

The multifunctional transforming growth factors-beta (TGF-ßs) have been extensively studied regarding their role in the pathogenesis of neovascular age-related macular degeneration (nAMD), a major cause of severe visual loss in the elderly in developed countries. Despite this, their effect remains somewhat controversial. Indeed, both pro- and antiangiogenic activities have been suggested for TGF-ß signaling in the development and progression of nAMD, and opposite therapies have been proposed targeting the inhibition or activation of the TGF-ß pathway. The present article summarizes the current literature linking TGF-ß and nAMD, and reviews experimental data supporting both pro- and antiangiogenic hypotheses, taking into account the limitations of the experimental approaches.


Asunto(s)
Degeneración Macular/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Humanos , Degeneración Macular/etiología , Neovascularización Fisiológica , Neuronas Retinianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...