Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 242: 116057, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422674

RESUMEN

Free radical formation in two diuretics: indapamide and torasemide was examined during UV irradiation and storage at higher temperatures using X-band (9.3 GHz) electron paramagnetic resonance spectroscopy (EPR). The aim of this study was to investigate the possibility of storing indapamide and torasemide under UV irradiation and at higher temperatures, which may occur during exposure to light. The diuretic samples were exposed to UVA irradiation for 15, 30 and 45 minutes, and stored at temperatures of 40 °C and 50 °C by 30 minutes. The EPR spectra were analyzed to determine the amplitudes (A), linewidths (ΔBpp), and integral intensities (I) and g factors. The concentrations of free radical (N) in the diuretic samples were also determined. The influence of microwave power on amplitudes, linewidths and the asymmetry parameter were evaluated. The result showed that the tested indapamide and torasemide samples exhibited high free radical concentrations in the range of 1018-1019 spin/g after UV irradiation and heat treatment. Therefore, due to the significant free radical formation indapamide and torasemide should not be stored under UV light and at temperatures of 40 °C and 50 °C. The complex character of free radical systems in the diuretic samples was proved as evidenced by the changes of the asymmetry parameters of the EPR lines with increasing microwave power. Fast spin-lattice relaxation processes were observed in all tested diuretic samples, regardless of the storage conditions. Electron paramagnetic resonance spectroscopy is proposed as a useful method in pharmacy to determine the appropriate storage conditions for diuretics.


Asunto(s)
Calor , Indapamida , Torasemida , Temperatura , Espectroscopía de Resonancia por Spin del Electrón/métodos , Rayos Ultravioleta , Radicales Libres/química , Diuréticos
2.
J Clin Med ; 11(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268340

RESUMEN

The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell-cell and cell-matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors' action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...