Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fungal Genet Biol ; 69: 1-12, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24875421

RESUMEN

cis-Prenyltransferase is the first enzyme of the mevalonate pathway committed to the biosynthesis of dolichol in eukaryotes. The RER2 gene encoding cis-prenyltransferase (Rer2p) in the human fungal pathogen Candida albicans was characterized. In addition, the ORF19.5236 encoding the second cis-prenyltransferase, which putatively is responsible for the synthesis of longer polyisoprenoids chains, was identified. When cultivated under repressive conditions, the conditional mutant strain expressing the RER2 gene from the regulatable MET3 promoter contained only 4% of cis-prenyltransferase activity and markedly diminished amounts of dolichols, as compared to the wild-type strain. Moreover, transcriptomal analyses revealed changes in the expression of 300 genes, mainly involved in transport, response to stress, filamentous growth and organelle organization. Growth of the conditional strain was blocked completely at 37 °C. The strain was hypersensitive to a wide range of inhibitors, which suggested glycosylation defects and compromised cell wall integrity. Moreover, the rer2 conditional mutant grown in the repressive conditions, unlike the same strain in the absence of repressor, failed to form hyphae. The results indicate that dolichols are essential not only for protein glycosylation and cell wall integrity but also for growth and development of C. albicans.


Asunto(s)
Candida albicans/enzimología , Candida albicans/fisiología , Pared Celular/metabolismo , Glicosilación , Hifa/crecimiento & desarrollo , Transferasas/metabolismo , Candida albicans/citología , Candida albicans/crecimiento & desarrollo , Dolicoles/análisis , Regulación hacia Abajo , Expresión Génica , Perfilación de la Expresión Génica , Temperatura , Transferasas/genética
2.
Pol J Microbiol ; 61(4): 247-56, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23484407

RESUMEN

Transition from round budding cells to long hyphal forms and production of secreted aspartic proteases (Saps) are considered virulence-associated factors of Candida albicans. Although plenty of data dealing with Saps involvement in the infection process have been published, Saps expression by the different pleomorphic forms as well as the capacity of C. albicans filaments to express Sap1-6 under serum influence are poorly investigated. In this study, we used immunofluorescence and immunoelectron microscopy for the detection of Sap1-6 isoenzymes in C. albicans pleomorphic cells (blastoconidia, germ tubes, pseudohyphae, true hyphae) grown in Sap-inductive human serum and Sap non-inductive medium - yeast extract-peptone-glucose (YEPD). Isoenzymes were below the detection level in all blastoconidial cells grown in YEPD for 18 h. Sap1-6 expression was hardly detected in C. albicans cells cultivated in serum for 20 min. Increasing level of Sap1-6 expression was observed when C. albicans was incubated for 2, 6 and 18 h in serum corresponding to the development of germ tubes, pseudohyphae and true hyphae. The expression of Sap1-3 in pseudohyphae and true hyphae was more intensive compared to Sap4-6. Thus, we could show that human serum induced hyphae formation and the expression of Sap1-6 were co-regulated.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Candida albicans/enzimología , Candida albicans/genética , Proteínas Fúngicas/metabolismo , Antígenos Fúngicos , Ácido Aspártico Endopeptidasas/genética , Candida albicans/citología , Candida albicans/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Proteínas Fúngicas/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología
3.
Acta Biochim Pol ; 55(3): 447-56, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18797519

RESUMEN

Due to its natural properties, Trichoderma reesei is commonly used in industry-scale production of secretory proteins. Since almost all secreted proteins are O-glycosylated, modulation of the activity of enzymes of the O-glycosylation pathway are likely to affect protein production and secretion or change the glycosylation pattern of the secreted proteins, altering their stability and biological activity. Understanding how the activation of different components of the O-glycosylation pathway influences the glycosylation pattern of proteins and their production and secretion could help in elucidating the mechanism of the regulation of these processes and should facilitate creation of engineered microorganisms producing high amounts of useful proteins. In this review we focus on data concerning Trichoderma, but also present some background information allowing comparison with other fungal species.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Trichoderma/metabolismo , Secuencia de Carbohidratos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Fúngicos , Glicoproteínas/biosíntesis , Glicoproteínas/química , Glicoproteínas/genética , Glicosilación , Datos de Secuencia Molecular , Ingeniería de Proteínas , Trichoderma/genética
4.
Yeast ; 24(4): 239-52, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17397129

RESUMEN

Evidence is presented that temperature-sensitive Saccharomyces cerevisiae mutants, impaired in dolichol kinase (Sec59p) or dolichyl phosphate mannose synthase (Dpm1p) activity have an aberrant cell wall composition and ultrastructure. The mutants were oversensitive to Calcofluor white, an agent interacting with the cell wall chitin. In accordance with this, chemical analysis of the cell wall alkali-insoluble fraction indicated an increased amount of chitin and changes in the quantity of beta1,6- and beta1,3-glucan in sec59-1 and dpm1-6 mutants. In order to unravel the link between the formation of dolichyl phosphate and dolichyl phosphate mannose and the cell wall assembly, we screened a yeast genomic library for a multicopy suppressors of the thermosensitive phenotype. The RER2 and SRT1 genes, encoding cis-prenyltransferases, were isolated. In addition, the ROT1 gene, encoding protein involved in beta1,6-glucan synthesis (Machi et al., 2004) and protein folding (Takeuchi et al., 2006) acted as a multicopy suppressor of the temperature-sensitive phenotype of the sec59-1 mutant. The cell wall of the mutants and of mutants bearing the multicopy suppressors was analysed for carbohydrate and mannoprotein content. We also examined the glycosylation status of the plasma membrane protein Gas1p, a beta1,3-glucan elongase, and the degree of phosphorylation of the Mpk1/Slt2 protein, involved in the cell wall integrity pathway.


Asunto(s)
Pared Celular/metabolismo , Fosfatos de Dolicol/metabolismo , Ligasas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Mutación Puntual , Saccharomyces cerevisiae/ultraestructura , Pared Celular/ultraestructura , Dolicoles , Regulación Fúngica de la Expresión Génica , Glicosilación , Ligasas/metabolismo , Manosa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell Struct Funct ; 32(1): 1-7, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17229992

RESUMEN

The sister chromatid cohesion complex of Saccharomyces cerevisiae is composed of proteins termed cohesins. The complex forms a ring structure that entraps sister DNAs, probably following replication. The mechanism of cohesion is universal and the proteins participating in this process are evolutionarily highly conserved. We investigated the Irr1p/Scc3p cohesin subunit, an under-studied protein. We show that the presence of a mutated copy of IRR1 gene, encoding the F658G substitution in Irr1p, changes the sensitivity of the heterozygous irr1-1/IRR1 diploid to cell wall-affecting compounds. Microscopic images indicate that chitin distribution in the mutant cell wall is affected, although the biochemical composition of the cell wall is not drastically changed. This observation suggests that irr1-1 mutation in heterozygous state may influence the cell wall integrity and indicates a possible link between mechanisms regulating the cell wall biosynthesis, nuclear migration and chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Pared Celular/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/fisiología , División Celular/fisiología , Núcleo Celular/fisiología , Quitina/genética , Quitina/fisiología , Cromátides/genética , Proteínas Cromosómicas no Histona/fisiología , Segregación Cromosómica/fisiología , Cromosomas Fúngicos/genética , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Proteínas Nucleares/fisiología , Mutación Puntual , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Transducción de Señal/fisiología , Cohesinas
6.
Appl Environ Microbiol ; 72(12): 7778-84, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17056680

RESUMEN

Expression of the Saccharomyces cerevisiae DPM1 gene (coding for dolichylphosphate mannose synthase) in Trichoderma reesei (Hypocrea jecorina) increases the intensity of protein glycosylation and secretion and causes ultrastructural changes in the fungal cell wall. In the present work, we undertook further biochemical and morphological characterization of the DPM1-expressing T. reesei strains. We established that the carbohydrate composition of the fungal cell wall was altered with an increased amount of N-acetylglucosamine, suggesting an increase in chitin content. Calcofluor white staining followed by fluorescence microscopy indicated changes in chitin distribution. Moreover, we also observed a decreased concentration of mannose and alkali-soluble beta-(1,6) glucan. A comparison of protein secretion from protoplasts with that from mycelia showed that the cell wall created a barrier for secretion in the DPM1 transformants. We also discuss the relationships between the observed changes in the cell wall, increased protein glycosylation, and the greater secretory capacity of T. reesei strains expressing the yeast DPM1 gene.


Asunto(s)
Pared Celular/química , Glicoproteínas/metabolismo , Manosiltransferasas/metabolismo , Saccharomyces cerevisiae/enzimología , Trichoderma/enzimología , Regulación hacia Arriba , Biotecnología/métodos , Pared Celular/metabolismo , Quitina/análisis , Glicosilación , Manosa/análisis , Manosiltransferasas/genética , Saccharomyces cerevisiae/genética , Trichoderma/genética , beta-Glucanos/análisis
7.
Acta Biochim Pol ; 52(1): 221-32, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15827619

RESUMEN

In the yeast Saccharomyces cerevisiae the RER2 and SRT1 genes encode Rer2 and Srt1 proteins with cis-prenyltransferase (cis-PT-ase) activity. Both cis-PT-ases utilize farnesyl diphosphate (FPP) as a starter for polyprenyl diphosphate (dolichol backbone) formation. The products of the Rer2 and Srt1 proteins consist of 14-17 and 18-23 isoprene units, respectively. In this work we demonstrate that deletion or overexpression of SRT1 up-regulates the activity of Rer2p and dolichol content. However, upon overexpression of SRT1, preferential synthesis of longer-chain dolichols and a decrease in the amount of the shorter species are observed. Furthermore, overexpression of the ERG20 gene (encoding farnesyl diphosphate synthase, Erg20p) induces transcription of SRT1 mRNA and increases the levels of mRNA for RER2 and DPM1 (dolichyl phosphate mannose synthase, Dpm1p). Subsequently the enzymatic activity of Rer2p and dolichol content are also increased. However, the amount of Dpm1p or its enzymatic activity remain unchanged.


Asunto(s)
Dolicoles/biosíntesis , Saccharomyces cerevisiae/enzimología , Transferasas/metabolismo , Secuencia de Bases , Cartilla de ADN , Genes Fúngicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética
8.
Acta Biochim Pol ; 52(1): 207-20, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15827618

RESUMEN

Dimethylallyl diphosphate, an isomer of isopentenyl diphosphate, is a common substrate of Mod5p, a tRNA modifying enzyme, and the farnesyl diphosphate synthase Erg20p, the key enzyme of the isoprenoid pathway. rsp5 mutants, defective in the Rsp5 ubiquitin-protein ligase, were isolated and characterized as altering the mitochondrial/cytosolic distribution of Mod5p. To understand better how competition for the substrate determines the regulation at the molecular level, we analyzed the effect of the rsp5-13 mutation on Erg20p expression. The level of Erg20p was three times lower in rsp5-13 compared to the wild type strain and this effect was dependent on active Mod5p. Northern blot analysis indicated a regulatory role of Rsp5p in ERG20 transcription. ERG20 expression was also impaired in pkc1Delta lacking a component of the cell wall integrity signaling pathway. Low expression of Erg20p in rsp5 cells was accompanied by low level of ergosterol, the main end product of the isoprenoid pathway. Additionally, rsp5 strains were resistant to nystatin, which binds to ergosterol present in the plasma membrane, and sensitive to calcofluor white, a drug destabilizing cell wall integrity by binding to chitin. Furthermore, the cell wall structure appeared abnormal in most rsp5-13 cells investigated by electron microscopy and chitin level in the cell wall was increased two-fold. These results indicate that Rsp5p affects the isoprenoid pathway which has important roles in ergosterol biosynthesis, protein glycosylation and transport and in this way may influence the composition of the plasma membrane and cell wall.


Asunto(s)
Pared Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte , Ergosterol/genética , Genes Fúngicos , Mutación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA