Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micron ; 149: 103124, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34314943

RESUMEN

The current work presents the complex dielectric function and the opto-electronic properties of lead-free Ba0.8Ca0.2Ti0.9Zr0.1O3 (BCZT) electro-ceramic, derived from valence electron energy loss spectroscopy, in transmission electron microscopy (VEELS-TEM). A single tetragonal perovskite phase, with P4mm space group, was determined by Rietveld refinement of the x-ray diffraction pattern. The VEELS-TEM experiment scanned the energy interval from 0-50 eV. The spectroscopic analysis started with the chemical identification of the atoms that conforms the BCZT solid-solution. Bulk and surface plasmons were located at 27.2 eV and 12.9 eV, respectively in the energy loss function. Complex dielectric function was obtained using Kramers-Kronig analysis from the Gatan Microscopy Suite software. Dielectric constant was calculated from the real part of the complex dielectric function, while the inter-band transitions were identified in the joint density of states function. The refraction index n and the extinction coefficient k, as a function of energy, were obtained from the complex dielectric function. The bandgap energy was determined using a polynomial fit in the optical absorption coefficient plot with an Eg = 3.2 eV.

2.
Carbon N Y ; 70: 164-171, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24634536

RESUMEN

A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...