Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AoB Plants ; 14(3): plac017, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35774379

RESUMEN

The diversity of functional traits still has not been studied enough in model plant species, even less so in little-known species. This experiment was carried out under the extreme heat of Sonoran Desert, using shading nets and under conditions where the availability of water and nutrients was not a stress factor. We evaluated how the low, intermediate and high sunlight regimes impact survival and promote multiple alterations on phenological and ecophysiological response of cultivated Capsicum annuum var. glabriusculum plants. Extremely warm temperatures promoted a high heat sum in degrees days throughout plants development. Most plants grown in high sunlight regimes did not survive; under intermediate sunlight regimes survival was high and plants developed vegetative and reproductively; but under low sunlight regimes plants survival was high; however, they developed just vegetatively. Photosynthetic response to light suggests that plants are physiologically acclimated to low and intermediate irradiance, whereas the CO2 assimilation curves suggest contrasting photosynthetic capacity traits. Under the intermediate sunlight regimes, plants strengthened their performance through multiple functional traits (e.g. CO2 and water diffusion traits, photosynthetic capacity, respiration, among others). Consequently, their biomass gain was faster and proportionally higher by 76 % with an investment of 14 % in fruits development. The principal components analysis extracted the main explanatory functional traits: photosynthetic nitrogen allocation, stomatal limitation, mesophyll conductance, Rubisco maximum carboxylation velocity, among others. In conclusion, phenological response and multiple functional traits determine plants acclimation to sunlight regimes and extremely warm temperatures in short term.

2.
J Plant Physiol ; 231: 31-40, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30212659

RESUMEN

Rhamnogalacturonan I (RG-I) is a domain of plant cell wall pectin. The rhamnogalacturonan lyase (RGL) enzyme (EC 4.2.2.23) degrades RG-I by cleaving the α-1,4 glycosidic bonds located between the l-rhamnose and d-galacturonic residues of the main chain. While RGL's biochemical mode of action is well known, its effects on plant physiology remain unclear. To investigate the role of the RGL enzyme in plants, we have expressed the Solyc11g011300 gene under a constitutive promoter (CaMV35S) in tomato cv. 'Ohio 8245' and evaluated the expression of this and other RGL genes, enzymatic activity and alterations in vegetative tissue, and tomato physiology in transformed lines compared to the positive control (plants harboring the pCAMBIA2301 vector) and the isogenic line. The highest expression levels of the Solyc11g011300, Solyc04g076630, and Solyc04g076660 genes were observed in leaves and roots and at 10 and 20 days after anthesis (DAA). Transgenic lines exhibited lower RGL activity in leaves and roots and during fruit ripening, whereas higher activity was observed at 10, 20, and 30 DAA than in the isogenic line and positive control. Both transgenic lines showed a lower number of seeds and fruits, higher root length, and less pollen germination percentage and viability. In red ripe tomatoes, transgenic fruits showed greater firmness, longer shelf life, and reduced shriveling than did the isogenic line. Additionally, a delay of one week in fruit ripening in transgenic fruits was also recorded. Altogether, our data demonstrate that the Solyc11g011300 gene participates in pollen tube germination, fruit firmness, and the fruit senescence phenomena that impact postharvest shelf life.


Asunto(s)
Frutas/crecimiento & desarrollo , Genes de Plantas/fisiología , Pectinas/metabolismo , Proteínas de Plantas/genética , Polisacárido Liasas/genética , Solanum lycopersicum/genética , Frutas/enzimología , Frutas/metabolismo , Perfilación de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/fisiología , Solanum lycopersicum/enzimología , Solanum lycopersicum/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Polen/genética , Polen/metabolismo , Tubo Polínico/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...