Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Cardiovasc Res ; 3(9): 1035-1048, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232138

RESUMEN

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide. Laminar shear stress from blood flow, sensed by vascular endothelial cells, protects from ASCVD by upregulating the transcription factors KLF2 and KLF4, which induces an anti-inflammatory program that promotes vascular resilience. Here we identify clustered γ-protocadherins as therapeutically targetable, potent KLF2 and KLF4 suppressors whose upregulation contributes to ASCVD. Mechanistic studies show that γ-protocadherin cleavage results in translocation of the conserved intracellular domain to the nucleus where it physically associates with and suppresses signaling by the Notch intracellular domain. γ-Protocadherins are elevated in human ASCVD endothelium; their genetic deletion or antibody blockade protects from ASCVD in mice without detectably compromising host defense against bacterial or viral infection. These results elucidate a fundamental mechanism of vascular inflammation and reveal a method to target the endothelium rather than the immune system as a protective strategy in ASCVD.


Asunto(s)
Aterosclerosis , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Aterosclerosis/metabolismo , Aterosclerosis/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Humanos , Modelos Animales de Enfermedad , Transducción de Señal , Cadherinas/metabolismo , Cadherinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Masculino , Receptores Notch/metabolismo , Receptores Notch/genética , Proteínas Relacionadas con las Cadherinas , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología
2.
bioRxiv ; 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38293157

RESUMEN

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide1. Laminar shear stress (LSS) from blood flow in straight regions of arteries protects against ASCVD by upregulating the Klf2/4 anti-inflammatory program in endothelial cells (ECs)2-8. Conversely, disturbed shear stress (DSS) at curves or branches predisposes these regions to plaque formation9,10. We previously reported a whole genome CRISPR knockout screen11 that identified novel inducers of Klf2/4. Here we report suppressors of Klf2/4 and characterize one candidate, protocadherin gamma A9 (Pcdhga9), a member of the clustered protocadherin gene family12. Pcdhg deletion increases Klf2/4 levels in vitro and in vivo and suppresses inflammatory activation of ECs. Pcdhg suppresses Klf2/4 by inhibiting the Notch pathway via physical interaction of cleaved Notch1 intracellular domain (NICD Val1744) with nuclear Pcdhg C-terminal constant domain (CCD). Pcdhg inhibition by EC knockout (KO) or blocking antibody protects from atherosclerosis. Pcdhg is elevated in the arteries of human atherosclerosis. This study identifies a novel fundamental mechanism of EC resilience and therapeutic target for treating inflammatory vascular disease.

3.
Endocrinology ; 164(11)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37738419

RESUMEN

Glucocorticoids acting via the glucocorticoid receptors (GR) are key regulators of metabolism and the stress response. However, uncontrolled or excessive GR signaling adversely affects adipose tissue, including endocrine, immune, and metabolic functions. Inflammation of the adipose tissue promotes systemic metabolic dysfunction; however, the molecular mechanisms underlying the role of adipocyte GR in regulating genes associated with adipose tissue inflammation are poorly understood. We performed in vivo studies using adipocyte-specific GR knockout mice in conjunction with in vitro studies to understand the contribution of adipocyte GR in regulating adipose tissue immune homeostasis. Our findings show that adipocyte-specific GR signaling regulates adipokines at both mRNA and plasma levels and immune regulatory (Coch, Pdcd1, Cemip, and Cxcr2) mRNA gene expression, which affects myeloid immune cell presence in white adipose tissue. We found that, in adipocytes, GR directly influences Cxcr2. This chemokine receptor promotes immune cell migration, indirectly affecting Pdcd1 and Cemip gene expression in nonadipocyte or stromal cells. Our findings suggest that GR adipocyte signaling suppresses inflammatory signals, maintaining immune homeostasis. We also found that GR signaling in adipose tissue in response to stress is sexually dimorphic. Understanding the molecular relationship between GR signaling and adipose tissue inflammation could help develop potential targets to improve local and systemic inflammation, insulin sensitivity, and metabolic health.


Asunto(s)
Tejido Adiposo , Receptores de Glucocorticoides , Ratones , Animales , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Inflamación/genética , Inflamación/metabolismo , Homeostasis/genética , Ratones Noqueados , Genes Reguladores , ARN Mensajero/metabolismo
4.
Front Cell Dev Biol ; 9: 688388, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124074

RESUMEN

The Nck family of modular adaptor proteins, including Nck1 and Nck2, link phosphotyrosine signaling to changes in cytoskeletal dynamics and gene expression that critically modulate cellular phenotype. The Nck SH2 domain interacts with phosphotyrosine at dynamic signaling hubs, such as activated growth factor receptors and sites of cell adhesion. The Nck SH3 domains interact with signaling effectors containing proline-rich regions that mediate their activation by upstream kinases. In vascular biology, Nck1 and Nck2 play redundant roles in vascular development and postnatal angiogenesis. However, recent studies suggest that Nck1 and Nck2 differentially regulate cell phenotype in the adult vasculature. Domain-specific interactions likely mediate these isoform-selective effects, and these isolated domains may serve as therapeutic targets to limit specific protein-protein interactions. In this review, we highlight the function of the Nck adaptor proteins, the known differences in domain-selective interactions, and discuss the role of individual Nck isoforms in vascular remodeling and function.

6.
Front Physiol ; 9: 1311, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283356

RESUMEN

Several highly conserved families of guidance molecules, including ephrins, Semaphorins, Netrins, and Slits, play conserved and distinct roles in tissue remodeling during tissue patterning and disease pathogenesis. Primarily, these guidance molecules function as either secreted or surface-bound ligands that interact with their receptors to activate a variety of downstream effects, including cell contractility, migration, adhesion, proliferation, and inflammation. Vascular smooth muscle cells, contractile cells comprising the medial layer of the vessel wall and deriving from the mural population, regulate vascular tone and blood pressure. While capillaries lack a medial layer of vascular smooth muscle, mural-derived pericytes contribute similarly to capillary tone to regulate blood flow in various tissues. Furthermore, pericyte coverage is critical in vascular development, as perturbations disrupt vascular permeability and viability. During cardiovascular disease, smooth muscle cells play a more dynamic role in which suppression of contractile markers, enhanced proliferation, and migration lead to the progression of aberrant vascular remodeling. Since many types of guidance molecules are expressed in vascular smooth muscle and pericytes, these may contribute to blood vessel formation and aberrant remodeling during vascular disease. While vascular development is a large focus of the existing literature, studies emerged to address post-developmental roles for guidance molecules in pathology and are of interest as novel therapeutic targets. In this review, we will discuss the roles of guidance molecules in vascular smooth muscle and pericyte function in development and disease.

7.
Redox Biol ; 14: 261-271, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28982073

RESUMEN

Lipid Phosphate phosphatase 3 (LPP3), encoded by the Plpp3 gene, is an enzyme that dephosphorylates the bioactive lipid mediator lysophosphatidic acid (LPA). To study the role of LPP3 in the myocardium, we generated a cardiac specific Plpp3 deficient mouse strain. Although these mice were viable at birth in contrast to global Plpp3 knockout mice, they showed increased mortality ~ 8 months. LPP3 deficient mice had enlarged hearts with reduced left ventricular performance as seen by echocardiography. Cardiac specific Plpp3 deficient mice had longer ventricular effective refractory periods compared to their Plpp3 littermates. We observed that lack of Lpp3 enhanced cardiomyocyte hypertrophy based on analysis of cell surface area. We found that lack of Lpp3 signaling was mediated through the activation of Rho and phospho-ERK pathways. There are increased levels of fetal genes Natriuretic Peptide A and B (Nppa and Nppb) expression indicating myocardial dysfunction. These mice also demonstrate mitochondrial dysfunction as evidenced by a significant decrease (P < 0.001) in the basal oxygen consumption rate, mitochondrial ATP production, and spare respiratory capacity as measured through mitochondrial bioenergetics. Histology and transmission electron microscopy of these hearts showed disrupted sarcomere organization and intercalated disc, with a prominent disruption of the cristae and vacuole formation in the mitochondria. Our findings suggest that LPA/LPP3-signaling nexus plays an important role in normal function of cardiomyocytes.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Miocardio/metabolismo , Miocardio/patología , Fosfatidato Fosfatasa/metabolismo , Animales , Metabolismo Energético , Eliminación de Gen , Insuficiencia Cardíaca/genética , Lisofosfolípidos/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Consumo de Oxígeno , Fosfatidato Fosfatasa/genética , Transducción de Señal
8.
J Clin Invest ; 121(8): 3005-23, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21747167

RESUMEN

Stroke is the leading cause of long-term disability and the third leading cause of death in the United States. While most research thus far has focused on acute stroke treatment and neuroprotection, the exploitation of endogenous brain self-repair mechanisms may also yield therapeutic strategies. Here, we describe a distinct type of stroke treatment, the naturally occurring extracellular matrix fragment of perlecan, domain V, which we found had neuroprotective properties and enhanced post-stroke angiogenesis, a key component of brain repair, in rodent models of stroke. In both rat and mouse models, Western blot analysis revealed elevated levels of perlecan domain V. When systemically administered 24 hours after stroke, domain V was well tolerated, reached infarct and peri-infarct brain vasculature, and restored stroke-affected motor function to baseline pre-stroke levels in these multiple stroke models in both mice and rats. Post-stroke domain V administration increased VEGF levels via a mechanism involving brain endothelial cell α5ß1 integrin, and the subsequent neuroprotective and angiogenic actions of domain V were in turn mediated via VEGFR. These results suggest that perlecan domain V represents a promising approach for stroke treatment.


Asunto(s)
Proteoglicanos de Heparán Sulfato/química , Isquemia/patología , Neovascularización Patológica , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular/fisiopatología , Animales , Encéfalo/patología , Matriz Extracelular/metabolismo , Humanos , Integrina alfa5beta1 , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
J Vasc Res ; 47(2): 168-80, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19851078

RESUMEN

Vascular smooth muscle cell (SMC) phenotypic modulation plays a key role in atherosclerosis and is classically defined as a switch from a 'contractile' phenotype to a 'synthetic' phenotype, whereby genes that define the contractile SMC phenotype are suppressed and proliferation and/or migratory mechanisms are induced. There is also evidence that SMCs may take on a 'proinflammatory' phenotype, whereby SMCs secrete cytokines and express cell adhesion molecules, e.g. IL-8, IL-6, and VCAM-1, respectively, which may functionally regulate monocyte and macrophage adhesion and other processes during atherosclerosis. Factors that drive the inflammatory phenotype are not limited to cytokines but also include hemodynamic forces imposed on the blood vessel wall and intimate interaction of endothelial cells with SMCs, as well as changes in matrix composition in the vessel wall. However, it is critical to recognize that our understanding of the complex interaction of these multiple signal inputs has only recently begun to shed light on mechanisms that regulate the inflammatory SMC phenotype, primarily through models that attempt to recreate this environment ex vivo. The goal of this review is to summarize our current knowledge in this area and identify some of the key unresolved challenges and questions requiring further study.


Asunto(s)
Aterosclerosis/inmunología , Inflamación/inmunología , Músculo Liso Vascular/inmunología , Miocitos del Músculo Liso/inmunología , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Moléculas de Adhesión Celular/metabolismo , Proliferación Celular , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Hemodinámica , Humanos , Inflamación/genética , Inflamación/patología , Inflamación/fisiopatología , Mediadores de Inflamación/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/patología , Fenotipo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Estrés Mecánico , Transcripción Genética
10.
J Biol Chem ; 279(47): 48983-92, 2004 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-15371459

RESUMEN

Cells utilize dynamic interactions with the extracellular matrix to adapt to changing environmental conditions. Thrombospondin 1 (TSP1) induces focal adhesion disassembly and cell migration through a sequence (hep I) in its heparin-binding domain signaling through the calreticulin-low density lipoprotein receptor-related protein receptor complex. This involves the Galphai-dependent activation of ERK and phosphoinositide (PI) 3-kinase, both of which are required for focal adhesion disassembly. Focal adhesion kinase (FAK) regulates adhesion dynamics, acting in part by modulating RhoA activity, and FAK is implicated in ERK and PI 3-kinase activation. In this work, we sought to determine the role of FAK in TSP1-induced focal adhesion disassembly. TSP1/hep I does not stimulate focal adhesion disassembly in FAK knockout fibroblasts, whereas re-expressing FAK rescues responsiveness. Inhibiting FAK signaling through FRNK or FAK Y397F expression in endothelial cells also abrogates this response. TSP1/hep I stimulates a transient increase in FAK phosphorylation that requires calreticulin and Galphai, but not ERK or PI 3-kinase. Hep I does not activate ERK or PI 3-kinase in FAK knockout fibroblasts, suggesting activation occurs downstream of FAK. TSP1/hep I stimulates RhoA inactivation with kinetics corresponding to focal adhesion disassembly in a FAK, ERK, and PI 3-kinase-dependent manner. Furthermore, hep I does not stimulate focal adhesion disassembly in cells expressing constitutively active RhoA, suggesting that RhoA inactivation is required for this response. This is the first work to illustrate a connection between FAK phosphorylation in response to a soluble factor and RhoA inactivation, as well as the first report of PI 3-kinase and ERK in FAK regulation of RhoA activity.


Asunto(s)
Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Trombospondinas/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Animales , Plaquetas/metabolismo , Calreticulina/metabolismo , Bovinos , Movimiento Celular , Células Cultivadas , Dimerización , Endotelio Vascular/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Fibroblastos/metabolismo , Quinasa 1 de Adhesión Focal , Proteína-Tirosina Quinasas de Adhesión Focal , Subunidad alfa de la Proteína de Unión al GTP Gi2 , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Cinética , Microscopía Fluorescente , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Factores de Tiempo , Transfección
11.
J Cell Biol ; 161(6): 1179-89, 2003 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-12821648

RESUMEN

Thrombospondin (TSP) signals focal adhesion disassembly (the intermediate adhesive state) through interactions with cell surface calreticulin (CRT). TSP or a peptide (hep I) of the active site induces focal adhesion disassembly through binding to CRT, which activates phosphoinositide 3-kinase (PI3K) and extracellular signal-related kinase (ERK) through Galphai2 proteins. Because CRT is not a transmembrane protein, it is likely that CRT signals as part of a coreceptor complex. We now show that low density lipoprotein receptor-related protein (LRP) mediates focal adhesion disassembly initiated by TSP binding to CRT. LRP antagonists (antibodies, receptor-associated protein) block hep I/TSP-induced focal adhesion disassembly. LRP is necessary for TSP/hep I signaling because TSP/hep I is unable to stimulate focal adhesion disassembly or ERK or PI3K signaling in fibroblasts deficient in LRP. LRP is important in TSP-CRT signaling, as shown by the ability of hep I to stimulate association of Galphai2 with LRP. The isolated proteins LRP and CRT interact, and LRP and CRT are associated with hep I in molecular complexes extracted from cells. These data establish a mechanism of cell surface CRT signaling through its coreceptor, LRP, and suggest a novel function for LRP in regulating cell adhesion.


Asunto(s)
Calreticulina/metabolismo , Adhesión Celular/fisiología , Células Eucariotas/metabolismo , Adhesiones Focales/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Trombospondinas/metabolismo , Animales , Anticuerpos/farmacología , Bovinos , Línea Celular , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/antagonistas & inhibidores , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica/fisiología , Proteínas Recombinantes de Fusión , Transducción de Señal/fisiología
12.
J Biol Chem ; 277(23): 20453-60, 2002 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-11923291

RESUMEN

The matricellular protein thrombospondin (TSP) stimulates stress fiber and focal adhesion disassembly through a sequence (hep I) in its heparin-binding domain. TSP/hep I signals focal adhesion disassembly by binding cell surface calreticulin (CRT) and activating phosphoinositide 3-kinase (PI3K). However, other components of this signaling pathway have not been identified. We now show that TSP induces focal adhesion disassembly through activation of pertussis toxin (PTX)-sensitive G proteins and ERK phosphorylation. PTX pretreatment inhibits TSP/hep I-mediated focal adhesion disassembly as well as PI3K activation. In addition, membrane-permeable Galpha(i2)- and Gbetagamma-blocking peptides inhibit hep I-mediated focal adhesion disassembly. Hep I stimulates a transient increase in ERK activation, which is abrogated by both PTX and PI3K inhibitors. Inhibiting ERK activation with MEK inhibitors blocks hep I-mediated focal adhesion disassembly, indicating that ERK activation is required for cytoskeletal reorganization. G protein signals and ERK phosphorylation are induced by TSP binding to cell surface CRT, because CRT null mouse embryonic fibroblasts (MEF) fail to stimulate ERK phosphorylation in response to TSP/hep I treatment. These data show that G(i) protein and ERK, in concert with PI3K, are stimulated by TSP.CRT interactions at the cell surface to induce de-adhesive changes in the cytoskeleton.


Asunto(s)
Adhesión Celular/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Trombospondinas/fisiología , Secuencia de Aminoácidos , Animales , Bovinos , Línea Celular , Activación Enzimática , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Toxina del Pertussis , Fosforilación , Factores de Virulencia de Bordetella/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA