Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glycobiology ; 23(3): 363-80, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23118208

RESUMEN

The consortium for functional glycomics (CFG) was a large research initiative providing networking and resources for investigators studying the role of glycans and glycan-binding proteins in health and disease. Starting in 2001, six scientific cores were established to generate data, materials and new technologies. By the end of funding in 2011, the mouse phenotype core (MPC) submitted data to a website from the phenotype screen of 36 mutant mouse strains deficient in a gene for either a glycan-binding protein (GBP) or glycosyltransferase (GT). Each mutant strain was allotted three months for analysis and screened by standard phenotype assays used in the fields of immunology, histology, hematology, coagulation, serum chemistry, metabolism and behavior. Twenty of the deficient mouse strains had been studied in other laboratories, and additional tests were performed on these strains to confirm previous observations and discover new data. The CFG constructed 16 new homozygous mutant mouse strains and completed the initial phenotype screen of the majority of these new mutant strains. In total, >300 phenotype changes were observed, but considering the over 100 assays performed on each strain, most of the phenotypes were unchanged. Phenotype differences include abnormal testis morphology in GlcNAcT9- and Siglec-H-deficient mice and lethality in Pomgnt1-deficient mice. The numerous altered phenotypes discovered, along with the consideration of the significant findings of normality, will provide a platform for future characterization to understand the important roles of glycans and GBPs in the mechanisms of health and disease.


Asunto(s)
Glicosiltransferasas/genética , Lectinas/genética , Ratones Mutantes/genética , Fenotipo , Animales , Marcación de Gen , Homocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes/anatomía & histología , Ratones Mutantes/inmunología , Ratones Mutantes/fisiología , Mutación
2.
J Immunol ; 180(11): 7404-13, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18490740

RESUMEN

The recognition of carbohydrate moieties by cells of the innate immune system is emerging as an essential element in antifungal immunity, but despite the number and diversity of lectins expressed by innate immune cells, few carbohydrate receptors have been characterized. Mincle, a C-type lectin, is expressed predominantly on macrophages, and is here shown to play a role in macrophage responses to the yeast Candida albicans. After exposure to the yeast in vitro, Mincle localized to the phagocytic cup, but it was not essential for phagocytosis. In the absence of Mincle, production of TNF-alpha by macrophages was reduced, both in vivo and in vitro. In addition, mice lacking Mincle showed a significantly increased susceptibility to systemic candidiasis. Thus, Mincle plays a novel and nonredundant role in the induction of inflammatory signaling in response to C. albicans infection.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Receptor Toll-Like 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Candida albicans/metabolismo , Línea Celular , Susceptibilidad a Enfermedades , Humanos , Inmunidad Innata , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis , Fagosomas/inmunología , Fagosomas/metabolismo , Receptor Toll-Like 2/inmunología , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA