Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Biol ; : e14233, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38155511

RESUMEN

Conservation translocations are becoming common conservation practice, so there is an increasing need to understand the drivers of plant translocation performance through reviews of cases at global and regional levels. The establishment of the Italian Database of Plant Translocation (IDPlanT) provides the opportunity to review the techniques used in 186 plant translocation cases performed in the last 50 years in the heart of the Mediterranean Biodiversity Hotspot. We described techniques and information available in IDPlanT and used these data to identify drivers of translocation outcomes. We tested the effect of 15 variables on survival of translocated propagules as of the last monitoring date with binomial logistic mixed-effect models. Eleven variables significantly affected survival of transplants: life form, site protection, material source, number of source populations, propagation methods, propagule life stage, planting methods, habitat suitability assessment, site preparation, aftercare, and costs. The integration of vegetation studies in the selection of suitable planting sites significantly increased the success of translocation efforts. Although posttranslocation watering had a generally positive effect on translocation outcome, other aftercare techniques did not always increase transplant survival. Finally, we found that how funds were spent appeared to be more important than the actual amount spent. Plant translocations in Italy and in the Mediterranean area should account for the complexity of speciation, gene flow, and plant migrations that has led to local adaptations and has important implications for the choice and constitution of source material.


Mejores prácticas, errores y perspectivas tras medio siglo de reubicaciones botánicas en Italia Resumen Las reubicaciones son una práctica cada vez más común en la conservación, por lo que hay una necesidad creciente por entender los factores del desempeño de las reubicaciones botánicas por medio de la revisión de casos regionales y globales. La creación de la Italian Database of Plant Translocation (IDPlanT) proporciona una oportunidad para revisar las técnicas usadas para los casos de reubicación de 186 plantas realizados durante los últimos cincuenta años en el centro del punto caliente de biodiversidad mediterránea. Describimos las técnicas y la información disponible en IDPlanT y usamos estos datos para identificar los factores involucrados en los resultados de las reubicaciones. Usamos modelos logísticos binomiales de efectos mixtos para analizar el efecto de 15 variables sobre la supervivencia de los propágulos reubicados a partir de la última fecha de monitoreo. Once de las variables afectaron de manera significativa la supervivencia de las plantas: forma de vida, protección del sitio, fuente de materiales, cantidad de poblaciones originarias, método de propagación, etapa de vida del propágulo, método de siembra, evaluación de idoneidad del hábitat, preparación del sitio, cuidados posteriores y costos. La integración de los estudios botánicos a la selección de los sitios idóneos para plantar aumentó el éxito de los esfuerzos de reubicación. Aunque el riego posterior a la reubicación tuvo un efecto positivo general sobre el resultado, las otras técnicas de cuidado posterior no siempre incrementaron la supervivencia de la planta reubicada. Por último, descubrimos que parece ser más importante cómo se utilizan los fondos que la cantidad actual empleada. Las reubicaciones botánicas en Italia y en el área del Mediterráneo deben considerar lo complejo de la especiación, el flujo génico y la migración botánica que han derivado en adaptaciones locales y que han tenido implicaciones importantes para la elección y constitución del material de origen.

2.
Plants (Basel) ; 12(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37299128

RESUMEN

Five species of wild Oryza (O. nivara, O. rufipogon, O. eichengeri, O. rhizomatis and O. granulata), including the endemic species O. rhizomatis, have been recorded in Sri Lanka. These species are facing continuous decline in their populations due to natural and anthropogenic processes, with habitat loss being the main threat. This study aimed to provide information on the distribution, the current status of ex situ and in situ conservation, and to identify high-priority species and sites of wild rice in Sri Lanka, in order to improve the effectiveness of conservation efforts. Occurrence records of Sri Lankan wild rice species were collected from literature, gene banks, and field surveys. The distribution of these species was mapped, and areas with high species richness were identified. A gap analysis was conducted to determine the high-priority areas and species for ex situ and in situ conservation. It was found that about 23% of the wild rice populations in Sri Lanka were within protected areas, and by expanding these protected areas by 1 km, an additional 22% of the populations located on the border of these areas could be effectively conserved. Our analysis also revealed that 62% of Sri Lankan wild rice populations were not represented in gene banks. The species-rich areas were found to be in only two districts (Polonnaruwa and Monaragala), and less than 50% of these areas were within protected areas. Based on these findings, O. rhizomatis, O. eichengeri, and O. rufipogon were identified as high-priority species for in situ conservation. Ex situ collections were also deemed necessary for O. granulata and O. rhizomatis to ensure diversity representation in gene banks.

3.
Sci Total Environ ; 877: 162993, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948323

RESUMEN

Invasive alien species are among the main global drivers of biodiversity loss posing major challenges to nature conservation and to managers of protected areas. The present study applied a methodological framework that combined invasive Species Distribution Models, based on propagule pressure, abiotic and biotic factors for 14 invasive alien plants of Union concern in Italy, with the local interpretable model-agnostic explanation analysis aiming to map, evaluate and analyse the risk of plant invasions across the country, inside and outside the network of protected areas. Using a hierarchical invasive Species Distribution Model, we explored the combined effect of propagule pressure, abiotic and biotic factors on shaping invasive alien plant occurrence across three biogeographic regions (Alpine, Continental, and Mediterranean) and realms (terrestrial and aquatic) in Italy. We disentangled the role of propagule pressure, abiotic and biotic factors on invasive alien plant distribution and projected invasion risk maps. We compared the risk posed by invasive alien plants inside and outside protected areas. Invasive alien plant distribution varied across biogeographic regions and realms and unevenly threatens protected areas. As an alien's occurrence and risk on a national scale are linked with abiotic factors followed by propagule pressure, their local distribution in protected areas is shaped by propagule pressure and biotic filters. The proposed modelling framework for the assessment of the risk posed by invasive alien plants across spatial scales and under different protection regimes represents an attempt to fill the gap between theory and practice in conservation planning helping to identify scale, site, and species-specific priorities of management, monitoring and control actions. Based on solid theory and on free geographic information, it has great potential for application to wider networks of protected areas in the world and to any invasive alien plant, aiding improved management strategies claimed by the environmental legislation and national and global strategies.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Especies Introducidas , Especificidad de la Especie
4.
Plants (Basel) ; 11(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36235458

RESUMEN

In the Mediterranean Basin, a critical focal point for the conservation of plant diversity, there has been a large increase in practical conservation actions for many plant species to prevent extinction and to improve their conservation status; quantifying the effectiveness of these initiatives in reversing species declines is urgently important. In 2021, the International Union for Conservation of Nature (IUCN) launched a new tool that allows the impact of conservation actions on plant species to be assessed. The Green Status of Species is a new set of metrics under the Red List of Threatened Species that assigns species to recovery categories, complementary to the classic extinction risk categories. Crucially, the Green Status of Species provides methods to evaluate the impact of past conservation, and the potential for future conservation impact, on species status and recovery in a standardized way. Considering the efforts made so far for the conservation of Mediterranean threatened plants, using the Green Status of Species would be highly useful to direct future conservation policies. We, therefore, encourage botanists and practitioners working on threatened plants in the Mediterranean area to use this new assessment tool to inform conservation and recovery programs.

5.
Biology (Basel) ; 11(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-36101438

RESUMEN

Three subspecies of Armeria arenaria are reported from Italy, two of which are considered endemic to the Apennines. The taxonomic value of these two taxa (A. arenaria subsp. marginata and A. arenaria subsp. apennina) is unclear. Moreover, the relationships between A. arenaria subsp. praecox and Northern Italian populations-currently ascribed to A. arenaria subsp. arenaria-have never been addressed. Accordingly, we used an integrated taxonomic approach, including morphometry, seed morpho-colorimetry, karyology, molecular systematics (psbA-trnH, trnQ-rps16, trnF-trnL, trnL-rpl32, and ITS region), and comparative niche analysis. According to our results, French-Northern Italian populations are clearly distinct from Apennine populations. In the first group, there is evidence which allows the recognition of A. arenaria s.str. (not occurring in Italy) and A. arenaria subsp. praecox. In the second group, the two putative taxa endemic to the Northern Apennines cannot be separated, so a single subspecies is here recognized: A. arenaria subsp. marginata.

6.
New Phytol ; 230(2): 433-450, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33280123

RESUMEN

Although often not collected specifically for the purposes of conservation, herbarium specimens offer sufficient information to reconstruct parameters that are needed to designate a species as 'at-risk' of extinction. While such designations should prompt quick and efficient legal action towards species recovery, such action often lags far behind and is mired in bureaucratic procedure. The increase in online digitization of natural history collections has now led to a surge in the number new studies on the uses of machine learning. These repositories of species occurrences are now equipped with advances that allow for the identification of rare species. The increase in attention devoted to estimating the scope and severity of the threats that lead to the decline of such species will increase our ability to mitigate these threats and reverse the declines, overcoming a current barrier to the recovery of many threatened plant species. Thus far, collected specimens have been used to fill gaps in systematics, range extent, and past genetic diversity. We find that they also offer material with which it is possible to foster species recovery, ecosystem restoration, and de-extinction, and these elements should be used in conjunction with machine learning and citizen science initiatives to mobilize as large a force as possible to counter current extinction trends.


Asunto(s)
Ecosistema , Especies en Peligro de Extinción , Animales , Conservación de los Recursos Naturales , Extinción Biológica , Plantas
7.
Conserv Biol ; 34(2): 303-313, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31329316

RESUMEN

The alarming current and predicted species extinction rates have galvanized conservationists in their efforts to avoid future biodiversity losses, but for species extinct in the wild, few options exist. We posed the questions, can these species be restored, and, if so, what role can ex situ plant collections (i.e., botanic gardens, germplasm banks, herbaria) play in the recovery of plant genetic diversity? We reviewed the relevant literature to assess the feasibility of recovering lost plant genetic diversity with using ex situ material and the probability of survival of subsequent translocations. Thirteen attempts to recover species extinct in the wild were found, most of which used material preserved in botanic gardens (12) and seed banks (2). One case of a locally extirpated population was recovered from herbarium material. Eight (60%) of these cases were successful or partially successful translocations of the focal species or population; the other 5 failed or it was too early to determine the outcome. Limiting factors of the use of ex situ source material for the restoration of plant genetic diversity in the wild include the scarcity of source material, low viability and reduced longevity of the material, low genetic variation, lack of evolution (especially for material stored in germplasm banks and herbaria), and socioeconomic factors. However, modern collecting practices present opportunities for plant conservation, such as improved collecting protocols and improved cultivation and storage conditions. Our findings suggest that all types of ex situ collections may contribute effectively to plant species conservation if their use is informed by a thorough understanding of the aforementioned problems. We conclude that the recovery of plant species currently classified as extinct in the wild is not 100% successful, and the possibility of successful reintroduction should not be used to justify insufficient in situ conservation.


Colecciones Ex Situ y su Potencial para la Restauración de Plantas Extintas Resumen Las alarmantes tasas de extinción actuales y pronosticadas han incitado a los conservacionistas a esforzarse para evitar las futuras pérdidas de biodiversidad, pero para las especies que ya se encuentran extintas en vida silvestre existen pocas opciones. Nos preguntamos si estas especies pueden ser restauradas, y de ser así, qué papel pueden desempeñar las colecciones ex situ de plantas (es decir, jardines botánicos, bancos de germoplasma, herbarios) en la recuperación de la diversidad genética de las plantas. Revisamos la literatura relevante para evaluar la factibilidad de la recuperación de la diversidad genética perdida y la probabilidad de supervivencia subsecuente de las reubicaciones. Encontramos 13 intentos por recuperar especies extintas en vida silvestre, la mayoría de los cuales usó material preservado en jardines botánicos (12) y en bancos de semillas (2). También hubo un caso de una población eliminada localmente que fue recuperada con material de un herbario. Ocho (60%) de estos casos fueron reubicaciones exitosas o parcialmente exitosas de la especie o población focal; los otros cinco fallaron o era demasiado pronto para poder determinar el resultado. Los factores que limitan el uso de material proveniente de colecciones ex situ para la restauración de la diversidad genética de las plantas en vida silvestre incluyen la escasez de material original, la baja viabilidad y la longevidad reducida del material, la baja variación genética, la falta de evolución (especialmente para el material almacenado en herbarios y bancos de germoplasma) y los factores socioeconómicos. A pesar de esto, las prácticas modernas de colección representan una oportunidad para la conservación de las plantas, como los protocolos mejorados de recolección y las condiciones acrecentadas de cultivo y almacenamiento. Nuestros hallazgos sugieren que todos los tipos de colecciones ex situ pueden contribuir efectivamente a la conservación de especies de plantas si su uso está respaldado por un entendimiento a fondo de los problemas antes mencionados. Concluimos que la recuperación de especies de plantas que actualmente están clasificadas como extintas en vida silvestre no es 100% exitosa y que la posibilidad de una reintroducción exitosa no debería utilizarse para justificar una conservación in situ insuficiente.


Asunto(s)
Conservación de los Recursos Naturales , Banco de Semillas , Biodiversidad , Jardinería , Plantas
8.
Sci Total Environ ; 665: 1046-1052, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30893736

RESUMEN

Global plant diversity is at risk due to anthropogenic changes to ecosystems, but given severely limited conservation resources, a reliable prioritisation strategy for species and sites is needed. Our objective was to identify key areas for conserving the phylogenetic diversity (PD) of threatened vascular plants in Italy, one of the most species-rich regions in the Mediterranean Basin. We used spatial data and the conservation status of 995 threatened vascular plants and applied a phylogenetically informed spatial planning to minimize conservation costs. We then determined the degree of overlap with existing protected areas and evaluated whether this PD-based prioritisation of areas provides adequate protection for threatened phylogenetically distinctive species (EDGE). The cost-effective procedure identified as priority for conservation 12% of the study territory, while achieving over 90% of conservation targets (total PD). We showed that priority areas and protected areas are moderately spatially mismatched. We also showed that not all top-EDGE species were met by the procedure applied, hence we conclude that the PD-based model indicated key areas for protection, but nevertheless additional attention is needed to protect top-EDGE species. This study represents one of the most comprehensive analyses, to date, for the conservation of the native flora in the Mediterranean, incorporating both spatial distribution and evolutionary relationships. Our work on the prioritisation of threatened plant species across Italy can serve as a guide for future conservation applications.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Análisis Espacial , Tracheophyta , Conservación de los Recursos Naturales/economía , Análisis Costo-Beneficio , Embryophyta , Especies en Peligro de Extinción , Italia , Región Mediterránea , Filogenia , Técnicas de Planificación
9.
Ecol Evol ; 8(1): 150-161, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321859

RESUMEN

Understanding the key aspects of plant regeneration from seeds is crucial in assessing species assembly to their habitats. However, the regenerative traits of seed dormancy and germination are underrepresented in this context. In the alpine zone, the large species and microhabitat diversity provide an ideal context to assess habitat-related regenerative strategies. To this end, seeds of 53 species growing in alpine siliceous and calcareous habitats (6230 and 6170 of EU Directive 92/43, respectively) were exposed to different temperature treatments under controlled laboratory conditions. Germination strategies in each habitat were identified by clustering with k-means. Then, phylogenetic least squares correlations (PGLS) were fitted to assess germination and dormancy differences between species' main habitat (calcareous and siliceous), microhabitat (grasslands, heaths, rocky, and species with no specific microhabitats), and chorology (arctic-alpine and continental). Calcareous and siliceous grasslands significantly differ in their germination behaviour with a slow, mostly overwinter germination and high germination under all conditions, respectively. Species with high overwinter germination occurs mostly in heaths and have an arctic-alpine distribution. Meanwhile, species with low or high germinability in general inhabit in grasslands or have no specific microhabitat (they belong to generalist), respectively. Alpine species use different germination strategies depending on habitat provenance, species' main microhabitat, and chorotype. Such differences may reflect adaptations to local environmental conditions and highlight the functional role of germination and dormancy in community ecology.

10.
Sci Rep ; 6: 28542, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27345374

RESUMEN

Assisted colonization is one way of facilitating range shifts for species that are restricted in their ability to move in response to climate change. Here we conceptualize and apply a new decision framework for modelling assisted colonization of plant species prior to in situ realization. Three questions were examined: a) Is species translocation useful in a certain area? b) where, and c) how long will it be successful in the future? Applying our framework to Carex foetida in Italy at the core of its distribution and its southern edge revealed that assisted colonization could be successful in short-term (2010-2039) climate conditions, partially in medium (2040-2069) but not in long-term (2070-2099) scenarios. We show that, for some species, it is likely that assisted colonization would be successful in some portions of the recipient site under current and short-term climate conditions, but over the mid- and long-term, climate changes will make species translocation unsuccessful. The proposed decision framework can help identify species that will need different conservation actions (seed banks and/or botanical gardens) when assisted colonization is unlikely to be successful. Furthermore it has broad applicability, as it can support planning of assisted migration in mountainous areas in the face of climate change.


Asunto(s)
Carex (Planta)/crecimiento & desarrollo , Cambio Climático , Conservación de los Recursos Naturales/métodos , Plantas
11.
Insect Conserv Divers ; 9(6): 495-505, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32336986

RESUMEN

The habitat requirements of a species are the resources, conditions and space required for survival and reproduction. The habitat requirements of butterflies have been well studied, but the extent to which individuals within a species and between species utilise and share the habitat is poorly known.In a butterfly assemblage in northern Italy, we found that adults from 30 species avoid deciduous high-density forests and their ecotones, and they were positively related to open areas and their ecotones. Besides these common features, five groups of species can be discriminated in relation to a gradient from open area to forest, and species within groups were not equally specialised, as observed from a bipartite network analysis. In particular, some species appeared to be specialised and others appeared to be generalist, suggesting a nested pattern of resource use, rather than a clustered pattern in which each species uses a different subset of habitat types.The degree of variation in specialisation among species varied with the number of species falling in each group. Thus, an increased number of species, and thus possibly competition, is more likely to promote the co-occurrence of generalist and specialised species (nested patterns) rather than an increased niche segregation among species.Ascertaining how species overlap their habitat use at a local scale can be relevant for conservation purposes, because specialised populations are potentially more susceptible to network distortions.

12.
PLoS One ; 10(7): e0133626, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26197387

RESUMEN

Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence suggest that there may be major implications for future plant population size and structure.


Asunto(s)
Germinación/fisiología , Calor , Plantas , Estaciones del Año , Plantones/fisiología , Semillas/fisiología , Cambio Climático , Ecosistema , Bosques , Italia , Modelos Lineales , Desarrollo de la Planta , Latencia en las Plantas/fisiología , Especificidad de la Especie , Agua
13.
Ann Bot ; 116(6): 907-16, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26133689

RESUMEN

BACKGROUND AND AIMS: Glacier foreland plants are highly threatened by global warming. Regeneration from seeds on deglaciated terrain will be crucial for successful migration and survival of these species, and hence a better understanding of the impacts of climate change on seedling recruitment is urgently needed to predict future plant persistence in these environments. This study presents the first field evidence of the impact of climate change on recruitment success of glacier foreland plants. METHODS: Seeds of eight foreland species were sown on a foreland site at 2500 m a.s.l., and at a site 400 m lower in altitude to simulate a 2·7 °C increase in mean annual temperature. Soil from the site of origin was used to reproduce the natural germination substrate. Recruitment success, temperature and water potential were monitored for 2 years. The response of seed germination to warming was further investigated in the laboratory. KEY RESULTS: At the glacier foreland site, seedling emergence was low (0 to approx. 40 %) and occurred in summer in all species after seeds had experienced autumn and winter seasons. However, at the warmer site there was a shift from summer to autumn emergence in two species and a significant increase of summer emergence (13-35 % higher) in all species except two. Survival and establishment was possible for 60-75 % of autumn-emerged seedlings and was generally greater under warmer conditions. Early snowmelt in spring caused the main ecological factors enhancing the recruitment success. CONCLUSIONS: The results suggest that warming will influence the recruitment of glacier foreland species primarily via the extension of the snow-free period in spring, which increases seedling establishment and results in a greater resistance to summer drought and winter extremes. The changes in recruitment success observed here imply that range shifts or changes in abundance are possible in a future warmer climate, but overall success may be dependent on interactions with shifts in other components of the plant community.


Asunto(s)
Cambio Climático , Desarrollo de la Planta , Altitud , Sequías , Germinación , Calentamiento Global , Cubierta de Hielo , Plantas , Estaciones del Año , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Suelo , Temperatura , Agua/fisiología
14.
Ann Bot ; 110(1): 155-64, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22596094

RESUMEN

BACKGROUND AND AIMS: Despite the considerable number of studies on the impacts of climate change on alpine plants, there have been few attempts to investigate its effect on regeneration. Recruitment from seeds is a key event in the life-history of plants, affecting their spread and evolution and seasonal changes in climate will inevitably affect recruitment success. Here, an investigation was made of how climate change will affect the timing and the level of germination in eight alpine species of the glacier foreland. METHODS: Using a novel approach which considered the altitudinal variation of temperature as a surrogate for future climate scenarios, seeds were exposed to 12 different cycles of simulated seasonal temperatures in the laboratory, derived from measurements at the soil surface at the study site. KEY RESULTS: Under present climatic conditions, germination occurred in spring, in all but one species, after seeds had experienced autumn and winter seasons. However, autumn warming resulted in a significant increase in germination in all but two species. In contrast, seed germination was less sensitive to changes in spring and/or winter temperatures, which affected only three species. CONCLUSIONS: Climate warming will lead to a shift from spring to autumn emergence but the extent of this change across species will be driven by seed dormancy status. Ungerminated seeds at the end of autumn will be exposed to shorter winter seasons and lower spring temperatures in a future, warmer climate, but these changes will only have a minor impact on germination. The extent to which climate change will be detrimental to regeneration from seed is less likely to be due to a significant negative effect on germination per se, but rather to seedling emergence in seasons that the species are not adapted to experience. Emergence in autumn could have major implications for species currently adapted to emerge in spring.


Asunto(s)
Germinación/fisiología , Calentamiento Global , Semillas/fisiología , Italia , Latencia en las Plantas/fisiología , Factores de Tiempo
15.
Acta Biochim Pol ; 58(2): 203-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21503279

RESUMEN

Since antiquity, Achillea millefolium L. (Asteraceae) has been used in traditional medicine of several cultures, from Europe to Asia. Its richness in bioactive compounds contributes to a wide range of medicinal properties. In this study, we assessed A. millefolium methanolic extract and its isolated components for free radical scavenging activity against 2,2-diphenyl-pycrilhydrazyl, total antioxidant capacity (based on the reduction of Cu(++) to Cu(+)), and ability to inhibit lipid peroxidation. The activity against chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum was also tested. Chlorogenic acid, its derivatives and some flavonoids isolated by semipreparative HPLC and identified by NMR and spectrometric techniques were the major bioactive constituents of the methanolic extract. The latter exhibited significant antioxidant properties, as well as its flavonol glycosides and chlorogenic acids. With regard to the antiplasmodial activity, apigenin 7-glucoside was the most effective compound, followed by luteolin 7-glucoside, whereas chlorogenic acids were completely inactive. On the whole, our results confirmed A. millefolium as an important source of bioactive metabolites, justifying its pharmaceutical and ethnobotanical use.


Asunto(s)
Achillea/química , Antimaláricos/farmacología , Antioxidantes/farmacología , Depuradores de Radicales Libres/farmacología , Componentes Aéreos de las Plantas/química , Extractos Vegetales/farmacología , Antimaláricos/aislamiento & purificación , Antioxidantes/aislamiento & purificación , Ácido Clorogénico/aislamiento & purificación , Ácido Clorogénico/farmacología , Cromatografía Líquida de Alta Presión , Resistencia a Medicamentos , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Depuradores de Radicales Libres/aislamiento & purificación , Glucósidos/aislamiento & purificación , Glucósidos/farmacología , Humanos , Concentración 50 Inhibidora , Peroxidación de Lípido/efectos de los fármacos , Lipoproteínas LDL/química , Extractos Vegetales/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos , Ácido Quínico/análogos & derivados , Ácido Quínico/aislamiento & purificación , Ácido Quínico/farmacología , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...