Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37425836

RESUMEN

Chronic wounds are a common and costly complication of diabetes, where multifactorial defects contribute to dysregulated skin repair, inflammation, tissue damage, and infection. We previously showed that aspects of the diabetic foot ulcer microbiota were correlated with poor healing outcomes, but many microbial species recovered remain uninvestigated with respect to wound healing. Here we focused on Alcaligenes faecalis , a Gram-negative bacterium that is frequently recovered from chronic wounds but rarely causes infection. Treatment of diabetic wounds with A. faecalis accelerated healing during early stages. We investigated the underlying mechanisms and found that A. faecalis treatment promotes re-epithelialization of diabetic keratinocytes, a process which is necessary for healing but deficient in chronic wounds. Overexpression of matrix metalloproteinases in diabetes contributes to failed epithelialization, and we found that A. faecalis treatment balances this overexpression to allow proper healing. This work uncovers a mechanism of bacterial-driven wound repair and provides a foundation for the development of microbiota-based wound interventions.

2.
Cell Rep ; 39(9): 110897, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649381

RESUMEN

Influenza viruses circulated at very low levels during the beginning of the COVID-19 pandemic, and population immunity against these viruses is low. An H3N2 strain (3C.2a1b.2a2) with a hemagglutinin (HA) that has several substitutions relative to the 2021-22 H3N2 vaccine strain is dominating the 2021-22 Northern Hemisphere influenza season. Here, we show that one of these substitutions eliminates a key glycosylation site on HA and alters sialic acid binding. Using glycan array profiling, we show that the 3C.2a1b.2a2 H3 maintains binding to an extended biantennary sialoside and replicates to high titers in human airway cells. We find that antibodies elicited by the 2021-22 Northern Hemisphere influenza vaccine poorly neutralize the 3C.2a1b.2a2 H3N2 strain. Together, these data indicate that 3C.2a1b.2a2 H3N2 viruses efficiently replicate in human cells and escape vaccine-elicited antibodies.


Asunto(s)
COVID-19 , Gripe Humana , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Hemaglutininas , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Pandemias , Estaciones del Año
3.
Cell ; 185(6): 1008-1024.e15, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35202565

RESUMEN

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...