Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Annu Rev Biophys ; 52: 319-337, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36737603

RESUMEN

Cooperativity (homotropic allostery) is the primary mechanism by which evolution steepens the binding curves of biomolecular receptors to produce more responsive input-output behavior in biomolecular systems. Motivated by the ubiquity with which nature employs this effect, over the past 15 years we, together with other groups, have engineered this mechanism into several otherwise noncooperative receptors. These efforts largely aimed to improve the utility of such receptors in artificial biotechnologies, such as synthetic biology and biosensors, but they have also provided the first quantitative, experimental tests of longstanding ideas about the mechanisms underlying cooperativity. In this article, we review the literature on the design of this effect, paying particular attention to the design strategies involved, the extent to which each can be rationally applied to (and optimized for) new receptors, and what each teaches us about the origins and optimization of this important phenomenon.


Asunto(s)
Ingeniería de Proteínas , Biología Sintética
2.
Chem Sci ; 13(41): 12219-12228, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36349092

RESUMEN

Biosensors and bioassays, both of which employ proteins and nucleic acids to detect specific molecular targets, have seen significant applications in both biomedical research and clinical practice. This success is largely due to the extraordinary versatility, affinity, and specificity of biomolecular recognition. Nevertheless, these receptors suffer from an inherent limitation: single, saturable binding sites exhibit a hyperbolic relationship (the "Langmuir isotherm") between target concentration and receptor occupancy, which in turn limits the sensitivity of these technologies to small variations in target concentration. To overcome this and generate more responsive biosensors and bioassays, here we have used the sequestration mechanism to improve the steepness of the input/output curves of several bioanalytical methods. As our test bed for this we employed sensors and assays against neutrophil gelatinase-associated lipocalin (NGAL), a kidney biomarker for which enhanced sensitivity will improve the monitoring of kidney injury. Specifically, by introducing sequestration we have improved the responsiveness of an electrochemical aptamer based (EAB) biosensor, and two bioassays, a paper-based "dipstick" assay and an enzyme-linked immunosorbent assay (ELISA). Doing so we have narrowed the dynamic range of these sensors and assays several-fold, thus enhancing their ability to measure small changes in target concentration. Given that introducing sequestration requires only the addition of the appropriate concentration of a high-affinity "depletant," the mechanism appears simple and easily adaptable to tuning the binding properties of the receptors employed in a wide range of biosensors and bioassays.

3.
Biosens Bioelectron ; 196: 113737, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34740116

RESUMEN

Simplicity is one of the key feature for the spread of any successful technological product. Here, a method for rapid and low-cost fabrication of electrochemical biosensors is presented. This "plug, print & play" method involves inkjet-printing even in an office-like environment, without the need of highly specialized expertise or equipment, guaranteeing an ultra-fast idea to (scaled) prototype production time. The printed biosensors can be connected to a smartphone through its audio input for their impedance readout, demonstrating the validity of the system for point-of-care biosensing. Proper electrodes layout guarantees high sensitivity and is validated by finite element simulations. The introduction of a passivation method (wax printing) allowed to complete the devices fabrication process, increasing their sensitivity. Indeed, the wax allowed reducing the interference related to the parasitic currents flowing through the permeable coating of the employed substrates, which was used for the chemical sintering, thus avoiding the common thermal treatment after printing. As a case study, we used the devices to develop an electrochemical aptamer-based sensor for the rapid detection of neutrophil gelatinase-associated lipocalin (NGAL) in urine - a clinically important marker of acute kidney injury. The aptasensor platform is capable of detecting clinically relevant concentrations of NGAL with a simple and rapid smartphone readout. The developed technology may be extended in the future to continuous monitoring, taking advantage of its flexibility to integrate it in tubes, or to other diagnostic applications where cost/efficiency and rapidity of the research, development and implementation of point of care devices is a must.


Asunto(s)
Técnicas Biosensibles , Impedancia Eléctrica , Electrodos , Teléfono Inteligente , Tecnología
4.
Protein Sci ; 30(12): 2408-2417, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719069

RESUMEN

The interactions of proteins with surfaces are important in both biological processes and biotechnologies. In contrast to decades of study regarding the biophysics of proteins in bulk solution, however, our mechanistic understanding of the biophysics of proteins interacting with surfaces remains largely qualitative. In response, we have set to explore quantitatively the thermodynamics of protein-surface interactions. In this work, we explore systematically the role of electrostatics in modulating the interaction between proteins and charged surfaces. In particular, we use electrochemistry to explore the extent to which a macroscopic, hydroxyl-coated surface held at a slightly negative potential affects the folding thermodynamics of surface-attached protein variants with different composition of charged amino acids. Doing so, we find that attachment to the surface generally leads to a net stabilization, presumably due to excluded volume effects that reduce the entropy of the unfolded state. The magnitude of this stabilization, however, is strongly correlated with the charged-residue content of the protein. In particular, we find statistically significant correlations with both the net charge of the protein, with greater negative charge leading to less stabilization by the surface, and with the number of arginines, with more arginines leading to greater stabilization. Such findings refine our understanding of protein-surface interactions, providing in turn a guiding rationale to achieve the functional deposition of proteins on artificial surfaces for implementation in, for example, protein-based biotechnologies.


Asunto(s)
Aminoácidos/química , Pliegue de Proteína , Proteínas/química , Secuencias de Aminoácidos , Técnicas Electroquímicas , Cinética , Unión Proteica , Desnaturalización Proteica , Electricidad Estática , Propiedades de Superficie , Termodinámica
5.
Chem Commun (Camb) ; 57(88): 11693-11696, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34673866

RESUMEN

Electrochemical aptamer-based (EAB) sensors, composed of an electrode-bound DNA aptamer with a redox reporter on the distal end, offer the promise of high-frequency, real-time molecular measurements in complex sample matrices and even in vivo. Here we assess the extent to which switching the aptamer terminus that is electrode-bound and the one that is redox-reporter-modified affects the performance of these sensors. Using sensors against doxorubicin, cocaine, and vancomycin as our test beds, we find that both signal gain (the relative signal change seen in the presence of a saturating target) and the frequency dependence of gain depend strongly on the attachment orientation, suggesting that this easily investigated variable is a worthwhile parameter to optimize in the design of new EAB sensors.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles , Técnicas Electroquímicas , Aptámeros de Nucleótidos/síntesis química , Cocaína/química , Doxorrubicina/química , Electrodos , Oxidación-Reducción , Vancomicina/química
6.
ACS Sens ; 6(9): 3340-3347, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34491055

RESUMEN

The ability to monitor drugs, metabolites, hormones, and other biomarkers in situ in the body would greatly advance both clinical practice and biomedical research. To this end, we are developing electrochemical aptamer-based (EAB) sensors, a platform technology able to perform real-time, in vivo monitoring of specific molecules irrespective of their chemical or enzymatic reactivity. An important obstacle to the deployment of EAB sensors in the challenging environments found in the living body is signal drift, whereby the sensor signal decreases over time. To date, we have demonstrated a number of approaches by which this drift can be corrected sufficiently well to achieve good measurement precision over multihour in vivo deployments. To achieve a much longer in vivo measurement duration, however, will likely require that we understand and address the sources of this effect. In response, here, we have systematically examined the mechanisms underlying the drift seen when EAB sensors and simpler, EAB-like devices are challenged in vitro at 37 °C in whole blood as a proxy for in vivo conditions. Our results demonstrate that electrochemically driven desorption of a self-assembled monolayer and fouling by blood components are the two primary sources of signal loss under these conditions, suggesting targeted approaches to remediating this degradation and thus improving the stability of EAB sensors and other, similar electrochemical biosensor technologies when deployed in the body.

7.
Biophys J ; 120(10): 2067-2077, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33794151

RESUMEN

Protein oligomerization processes are widespread and of crucial importance to understand degenerative diseases and healthy regulatory pathways. One particular case is the homo-oligomerization of folded domains involving domain swapping, often found as a part of the protein homeostasis in the crowded cytosol, composed of a complex mixture of cosolutes. Here, we have investigated the effect of a plethora of cosolutes of very diverse nature on the kinetics of a protein dimerization by domain swapping. In the absence of cosolutes, our system exhibits slow interconversion rates, with the reaction reaching the equilibrium within the average protein homeostasis timescale (24-48 h). In the presence of crowders, though, the oligomerization reaction in the same time frame will, depending on the protein's initial oligomeric state, either reach a pure equilibrium state or get kinetically trapped into an apparent equilibrium. Specifically, when the reaction is initiated from a large excess of dimer, it becomes unsensitive to the effect of cosolutes and reaches the same equilibrium populations as in the absence of cosolute. Conversely, when the reaction starts from a large excess of monomer, the reaction during the homeostatic timescale occurs under kinetic control, and it is exquisitely sensitive to the presence and nature of the cosolute. In this scenario (the most habitual case in intracellular oligomerization processes), the effect of cosolutes on the intermediate conformation and diffusion-mediated encounters will dictate how the cellular milieu affects the domain-swapping reaction.


Asunto(s)
Cinética , Difusión , Dimerización , Sustancias Macromoleculares , Multimerización de Proteína
8.
J Am Chem Soc ; 142(36): 15349-15354, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32786756

RESUMEN

The physics of proteins interacting with surfaces can differ significantly from those seen when the same proteins are free in bulk solution. As an example, we describe here the extent to which site-specific attachment to a chemically well-defined macroscopic surface alters the ability of several stabilizing and destabilizing cosolutes to modulate protein folding thermodynamics. We determined this via guanidinium denaturations performed in the presence of varying concentrations of cosolutes when proteins were either site-specifically attached to self-assembled monolayers on gold or free in bulk solution. Doing this we found that the extent to which guanidinium (a destabilizing Hofmeister cation), sulfate (a stabilizing Hofmeister anion), and urea (a neutral denaturant) alter the folding free energy remains indistinguishable whether proteins are surface-attached or free in bulk solution. In sharp contrast, however, neutral osmolytes sucrose and glycerol, which significantly stabilize proteins in bulk solution, do not measurably affect their stability when they are attached to a hydroxyl-terminated surface. In contrast, we recovered bulk solution-like stabilization when the attachment surface was instead carboxyl-terminated. It thus appears that chemistry-specific surface interactions can dramatically alter the way in which biomolecules interact with other components of the system.


Asunto(s)
Radical Hidroxilo/química , Polímeros/química , Proteínas/química , Guanidina/química , Pliegue de Proteína , Sulfatos/química , Propiedades de Superficie , Termodinámica , Urea/química
9.
Proc Natl Acad Sci U S A ; 117(32): 19136-19140, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32727893

RESUMEN

Cooperativity enhances the responsiveness of biomolecular receptors to small changes in the concentration of their target ligand, albeit with a concomitant reduction in affinity. The binding midpoint of a two-site receptor with a Hill coefficient of 1.9, for example, must be at least 19 times higher than the dissociation constant of the higher affinity of its two binding sites. This trade-off can be overcome, however, by the extra binding energy provided by the addition of more binding sites, which can be used to achieve highly cooperative receptors that still retain high affinity. Exploring this experimentally, we have employed an "intrinsic disorder" mechanism to design two cooperative, three-binding-site receptors starting from a single-site-and thus noncooperative-doxorubicin-binding aptamer. The first receptor follows a binding energy landscape that partitions the energy provided by the additional binding event to favor affinity, achieving a Hill coefficient of 1.9 but affinity within a factor of 2 of the parent aptamer. The binding energy landscape of the second receptor, in contrast, partitions more of this energy toward cooperativity, achieving a Hill coefficient of 2.3, but at the cost of 4-fold poorer affinity than that of the parent aptamer. The switch between these two behaviors is driven primarily by the affinity of the receptors' second binding event, which serves as an allosteric "gatekeeper" defining the extent to which the system is weighted toward higher cooperativity or higher affinity.


Asunto(s)
Receptores de Superficie Celular/química , Sitios de Unión , Doxorrubicina/química , Doxorrubicina/metabolismo , Cinética , Ligandos , Unión Proteica , Receptores de Superficie Celular/metabolismo
10.
ACS Sens ; 5(7): 1877-1881, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32619092

RESUMEN

The ability to monitor protein biomarkers continuously and in real-time would significantly advance the precision of medicine. Current protein-detection techniques, however, including ELISA and lateral flow assays, provide only time-delayed, single-time-point measurements, limiting their ability to guide prompt responses to rapidly evolving, life-threatening conditions. In response, here we present an electrochemical aptamer-based sensor (EAB) that supports high-frequency, real-time biomarker measurements. Specifically, we have developed an electrochemical, aptamer-based (EAB) sensor against Neutrophil Gelatinase-Associated Lipocalin (NGAL), a protein that, if present in urine at levels above a threshold value, is indicative of acute renal/kidney injury (AKI). When deployed inside a urinary catheter, the resulting reagentless, wash-free sensor supports real-time, high-frequency monitoring of clinically relevant NGAL concentrations over the course of hours. By providing an "early warning system", the ability to measure levels of diagnostically relevant proteins such as NGAL in real-time could fundamentally change how we detect, monitor, and treat many important diseases.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , Lesión Renal Aguda/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Humanos , Lipocalina 2
11.
Microsyst Nanoeng ; 6: 13, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34567628

RESUMEN

The multiplexed, point-of-care measurement of specific antibodies could improve the speed with which diseases are diagnosed and their treatment initiated. To this end, we are developing E-DNA scaffold sensors, which consist of a rigid, nucleic acid "scaffold" attached on one end to an electrode and presenting both a redox reporter and an epitope on the other. In the absence of antibody, the reporter efficiently transfers electrons when interrogated electrochemically. Binding-induced steric hindrance limits movement, reducing electron transfer in a manner that is both easily measured and quantitatively related to target concentration. Previously we have used monoclonal antibodies to explore the analytical performance of E-DNA sensors, showing that they support the rapid, single-step, quantitative detection of multiple antibodies in small volume samples. Here, in contrast, we employ authentic human samples to better explore the platform's clinical potential. Specifically, we developed E-DNA sensors targeting three HIV-specific antibodies and then compared the analytical and clinical performance of these against those of gold standard serological techniques. Doing so we find that, although the multistep amplification of an ELISA leads to a lower detection limits, the clinical sensitivity of ELISAs, E-DNA sensors and lateral-flow dipsticks are indistinguishable across our test set. It thus appears that, by merging the quantitation and multiplexing of ELISAs with the convenience and speed of dipsticks, E-DNA scaffold sensors could significantly improve on current serological practice.

12.
ACS Sens ; 4(12): 3227-3233, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31789505

RESUMEN

By analogy to the revolution the "home glucose monitor" created in the treatment of diabetes, the availability of a modular, "platform" technology able to measure nearly any metabolite, biomarker, or drug "at-home" in unprocessed, finger-prick volumes of whole blood could revolutionize the monitoring and treatment of disease. Thus motivated, we have adapted here the electrochemical aptamer-based sensing platform to the problem of rapidly and conveniently measuring the level of phenylalanine in the blood, an ability that would aid the monitoring and management of phenylketonuria (PKU). To achieve this, we exploited a previously reported DNA aptamer that recognizes phenylalanine in complex with a rhodium-based "receptor" that improves affinity. We re-engineered this to undergo a large-scale, binding-induced conformational change before modifying it with a methylene blue redox reporter and attaching it to a gold electrode that supports the appropriate electrochemical interrogation. The resultant sensor achieves a useful dynamic range of 90 nM to 7 µM. When challenged with finger-prick-scale sample volumes of the whole blood (diluted 1000-fold to match the sensor's dynamic range), the device achieves the accurate (±20%), calibration-free measurement of blood phenylalanine levels in minutes.


Asunto(s)
Aptámeros de Nucleótidos/química , Complejos de Coordinación/química , Técnicas Electroquímicas/métodos , Fenilalanina/sangre , Receptores Artificiales/química , Secuencia de Bases , Técnicas Electroquímicas/instrumentación , Electrodos , Oro/química , Humanos , Azul de Metileno/química , Pruebas en el Punto de Atención , Rodio/química
13.
Front Mol Biosci ; 6: 69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31475156

RESUMEN

Clinical drug dosing would, ideally, be informed by high-precision, patient-specific data on drug metabolism. The direct determination of patient-specific drug pharmacokinetics ("peaks and troughs"), however, currently relies on cumbersome, laboratory-based approaches that require hours to days to return pharmacokinetic estimates based on only one or two plasma drug measurements. In response clinicians often base dosing on age, body mass, pharmacogenetic markers, or other indirect estimators of pharmacokinetics despite the relatively low accuracy of these approaches. Here, in contrast, we explore the use of indwelling electrochemical aptamer-based (E-AB) sensors as a means of measuring pharmacokinetics rapidly and with high precision using a rat animal model. Specifically, measuring the disposition kinetics of the drug tobramycin in Sprague-Dawley rats we demonstrate the seconds resolved, real-time measurement of plasma drug levels accompanied by measurement validation via HPLC-MS on ex vivo samples. The resultant data illustrate the significant pharmacokinetic variability of this drug even when dosing is adjusted using body weight or body surface area, two widely used pharmacokinetic predictors for this important class of antibiotics, highlighting the need for improved methods of determining its pharmacokinetics.

14.
Anal Chem ; 91(19): 12321-12328, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31462040

RESUMEN

Electrochemical sensors are major players in the race for improved molecular diagnostics due to their convenience, temporal resolution, manufacturing scalability, and their ability to support real-time measurements. This is evident in the ever-increasing number of health-related electrochemical sensing platforms, ranging from single-measurement point-of-care devices to wearable devices supporting immediate and continuous monitoring. In support of the need for such systems to rapidly process large data volumes, we describe here an open-source, easily customizable, multiplatform compatible program for the real-time control, processing, and visualization of electrochemical data. The software's architecture is modular and fully documented, allowing the easy customization of the code to support the processing of voltammetric (e.g., square-wave and cyclic) and chronoamperometric data. The program, which we have called Software for the Analysis and Continuous Monitoring of Electrochemical Systems (SACMES), also includes a graphical interface allowing the user to easily change analysis parameters (e.g., signal/noise processing, baseline correction) in real-time. To demonstrate the versatility of SACMES we use it here to analyze the real-time data output by (1) the electrochemical, aptamer-based measurement of a specific small-molecule target, (2) a monoclonal antibody-detecting DNA-scaffold sensor, and (3) the determination of the folding thermodynamics of an electrode-attached, redox-reporter-modified protein.


Asunto(s)
Electroquímica/métodos , Programas Informáticos , Animales , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/metabolismo , Secuencia de Bases , Técnicas Biosensibles , ADN/análisis , Procesamiento Automatizado de Datos , Masculino , Pliegue de Proteína , Ratas , Ratas Sprague-Dawley , Relación Señal-Ruido , Factores de Tiempo
15.
Angew Chem Int Ed Engl ; 58(6): 1714-1718, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30549169

RESUMEN

Despite the importance of protein-surface interactions in both biology and biotechnology, our understanding of their origins is limited due to a paucity of experimental studies of the thermodynamics behind such interactions. In response, we have characterized the extent to which interaction with a chemically well-defined macroscopic surface alters the stability of protein L. To do so, we site-specifically attached a redox-reporter-modified protein variant to a hydroxy-terminated monolayer on a gold surface and then used electrochemistry to monitor its guanidine denaturation and determine its folding free energy. Comparison with the free energy seen in solution indicates that interaction with this surface stabilizes the protein by 6 kJ mol-1 , a value that is in good agreement with theoretical estimates of the entropic consequences of surface-induced excluded volume effects, thus suggesting that chemically specific interactions with this surface (e.g., electrostatic interactions) are limited in magnitude.


Asunto(s)
Oro/química , Proteínas/química , Termodinámica , Técnicas Electroquímicas , Pliegue de Proteína , Estabilidad Proteica , Electricidad Estática , Propiedades de Superficie
16.
Sci Transl Med ; 10(459)2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232228

RESUMEN

Congenital erythropoietic porphyria is a rare autosomal recessive disease produced by deficient activity of uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway. The disease affects many organs, can be life-threatening, and currently lacks curative treatments. Inherited mutations most commonly reduce the enzyme's stability, altering its homeostasis and ultimately blunting intracellular heme production. This results in uroporphyrin by-product accumulation in the body, aggravating associated pathological symptoms such as skin photosensitivity and disfiguring phototoxic cutaneous lesions. We demonstrated that the synthetic marketed antifungal ciclopirox binds to the enzyme, stabilizing it. Ciclopirox targeted the enzyme at an allosteric site distant from the active center and did not affect the enzyme's catalytic role. The drug restored enzymatic activity in vitro and ex vivo and was able to alleviate most clinical symptoms of congenital erythropoietic porphyria in a genetic mouse model of the disease at subtoxic concentrations. Our findings establish a possible line of therapeutic intervention against congenital erythropoietic porphyria, which is potentially applicable to most of deleterious missense mutations causing this devastating disease.


Asunto(s)
Ciclopirox/uso terapéutico , Reposicionamiento de Medicamentos , Porfiria Eritropoyética/tratamiento farmacológico , Sitio Alostérico , Animales , Fenómenos Biofísicos , Línea Celular , Ciclopirox/farmacocinética , Modelos Animales de Enfermedad , Homeostasis , Ratones , Fenotipo , Porfiria Eritropoyética/enzimología , Porfiria Eritropoyética/patología , Uroporfirinógeno III Sintetasa/antagonistas & inhibidores , Uroporfirinógeno III Sintetasa/química , Uroporfirinógeno III Sintetasa/metabolismo
17.
Proc Natl Acad Sci U S A ; 115(33): 8352-8357, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30061388

RESUMEN

Whereas proteins generally remain stable upon interaction with biological surfaces, they frequently unfold on and adhere to artificial surfaces. Understanding the physicochemical origins of this discrepancy would facilitate development of protein-based sensors and other technologies that require surfaces that do not compromise protein structure and function. To date, however, only a small number of such artificial surfaces have been reported, and the physics of why these surfaces support functional biomolecules while others do not has not been established. Thus motivated, we have developed an electrochemical approach to determining the folding free energy of proteins site-specifically attached to chemically well-defined, macroscopic surfaces. Comparison with the folding free energies seen in bulk solution then provides a quantitative measure of the extent to which surface interactions alter protein stability. As proof-of-principle, we have characterized the FynSH3 domain site-specifically attached to a hydroxyl-coated surface. Upon guanidinium chloride denaturation, the protein unfolds in a reversible, two-state manner with a free energy within 2 kJ/mol of the value seen in bulk solution. Assuming that excluded volume effects stabilize surface-attached proteins, this observation suggests there are countervening destabilizing interactions with the surface that, under these conditions, are similar in magnitude. Our technique constitutes an unprecedented experimental tool with which to answer long-standing questions regarding the molecular-scale origins of protein-surface interactions and to facilitate rational optimization of surface biocompatibility.


Asunto(s)
Pliegue de Proteína , Proteínas Proto-Oncogénicas c-fyn/química , Termodinámica , Dominios Homologos src , Técnicas Electroquímicas , Humanos , Estabilidad Proteica
18.
ACS Pharmacol Transl Sci ; 1(2): 110-118, 2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-32219207

RESUMEN

By, in effect, rendering pharmacokinetics an experimentally adjustable parameter, the ability to perform feedback-controlled dosing informed by high-frequency in vivo drug measurements would prove a powerful tool for both pharmacological research and clinical practice. Efforts to this end, however, have historically been thwarted by an inability to measure in vivo drug levels in real time and with sufficient convenience and temporal resolution. In response, we describe a closed-loop, feedback-controlled delivery system that uses drug level measurements provided by an in vivo electrochemical aptamer-based (E-AB) sensor to adjust dosing rates every 7 s. The resulting system supports the maintenance of either constant or predefined time-varying plasma drug concentration profiles in live rats over many hours. For researchers, the resultant high-precision control over drug plasma concentrations provides an unprecedented opportunity to (1) map the relationships between pharmacokinetics and clinical outcomes, (2) eliminate inter- and intrasubject metabolic variation as a confounding experimental variable, (3) accurately simulate human pharmacokinetics in animal models, and (4) measure minute-to-minute changes in a drug's pharmacokinetic behavior in response to changing health status, diet, drug-drug interactions, or other intrinsic and external factors. In the clinic, feedback-controlled drug delivery would improve our ability to accurately maintain therapeutic drug levels in the face of large, often unpredictable intra- and interpatient metabolic variation. This, in turn, would improve the efficacy and safety of therapeutic intervention, particularly for the most gravely ill patients, for whom metabolic variability is highest and the margin for therapeutic error is smallest.

19.
ACS Sens ; 3(2): 360-366, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29124939

RESUMEN

Electrochemical, aptamer-based (E-AB) sensors support the continuous, real-time measurement of specific small molecules directly in situ in the living body over the course of many hours. They achieve this by employing binding-induced conformational changes to alter electron transfer from a redox-reporter-modified, electrode-attached aptamer. Previously we have used voltammetry (cyclic, alternating current, and square wave) to monitor this binding-induced change in transfer kinetics indirectly. Here, however, we demonstrate the potential advantages of employing chronoamperometry to measure the change in kinetics directly. In this approach target concentration is reported via changes in the lifetime of the exponential current decay seen when the sensor is subjected to a potential step. Because the lifetime of this decay is independent of its amplitude (e.g., insensitive to variations in the number of aptamer probes on the electrode), chronoamperometrically interrogated E-AB sensors are calibration-free and resistant to drift. Chronoamperometric measurements can also be performed in a few hundred milliseconds, improving the previous few-second time resolution of E-AB sensing by an order of magnitude. To illustrate the potential value of the approach we demonstrate here the calibration-free measurement of the drug tobramycin in situ in the living body with 300 ms time resolution and unprecedented, few-percent precision in the determination of its pharmacokinetic phases.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Tobramicina/sangre , Animales , Electrodos , Transporte de Electrón , Femenino , Cinética , Masculino , Ratas Sprague-Dawley , Tobramicina/farmacocinética
20.
J Virol ; 91(24)2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28978705

RESUMEN

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of rare progressive neurodegenerative disorders caused by an abnormally folded prion protein (PrPSc). This is capable of transforming the normal cellular prion protein (PrPC) into new infectious PrPSc Interspecies prion transmissibility studies performed by experimental challenge and the outbreak of bovine spongiform encephalopathy that occurred in the late 1980s and 1990s showed that while some species (sheep, mice, and cats) are readily susceptible to TSEs, others are apparently resistant (rabbits, dogs, and horses) to the same agent. To study the mechanisms of low susceptibility to TSEs of certain species, the mouse-rabbit transmission barrier was used as a model. To identify which specific amino acid residues determine high or low susceptibility to PrPSc propagation, protein misfolding cyclic amplification (PMCA), which mimics PrPC-to-PrPSc conversion with accelerated kinetics, was used. This allowed amino acid substitutions in rabbit PrP and accurate analysis of misfolding propensities. Wild-type rabbit recombinant PrP could not be misfolded into a protease-resistant self-propagating isoform in vitro despite seeding with at least 12 different infectious prions from diverse origins. Therefore, rabbit recombinant PrP mutants were designed to contain every single amino acid substitution that distinguishes rabbit recombinant PrP from mouse recombinant PrP. Key amino acid residue substitutions were identified that make rabbit recombinant PrP susceptible to misfolding, and using these, protease-resistant misfolded recombinant rabbit PrP was generated. Additional studies characterized the mechanisms by which these critical amino acid residue substitutions increased the misfolding susceptibility of rabbit PrP.IMPORTANCE Prion disorders are invariably fatal, untreatable diseases typically associated with long incubation periods and characteristic spongiform changes associated with neuronal loss in the brain. Development of any treatment or preventative measure is dependent upon a detailed understanding of the pathogenesis of these diseases, and understanding the mechanism by which certain species appear to be resistant to TSEs is critical. Rabbits are highly resistant to naturally acquired TSEs, and even under experimental conditions, induction of clinical disease is not easy. Using recombinant rabbit PrP as a model, this study describes critical molecular determinants that confer this high resistance to transmissible spongiform encephalopathies.


Asunto(s)
Aminoácidos/química , Proteínas Priónicas/química , Pliegue de Proteína , Sustitución de Aminoácidos , Aminoácidos/aislamiento & purificación , Animales , Bovinos , Susceptibilidad a Enfermedades , Ratones , Mutación , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...