Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cladistics ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38469932

RESUMEN

The integration of morphological and molecular data is essential to understand the affinities of fossil taxa and spatio-temporal evolutionary processes of organisms. However, homoplastic morphological characters can mislead the placement of fossil taxa and impact downstream analyses. Here, we provide an example of how to mitigate effectively the effect of morphological homoplasy on the placement of fossil taxa and biogeographic inferences of Cissampelideae. We assembled three data types, morphological data only, morphological data with a molecular scaffold and combined morphological and molecular data. By removing high-level homoplastic morphological data or reweighting the morphological characters, we conducted 15 parsimony, 12 undated Bayesian and four dated Bayesian analyses. Our results show that the 14 selected Cissampelideae fossil taxa are placed poorly when based only on morphological data, but the addition of molecular scaffold and combination of morphological and molecular data greatly improve the resolution of fossil nodes. We raise the monotypic Stephania subg. Botryodiscia to generic status and discover that three fossils previously assigned to Stephania should be members of Diploclisia. The Bayesian tip-dated tree recovered by removing homoplastic morphological characters with a Rescaled Consistency Index <0.25 has the highest stratigraphic fit and consequently generates more reasonable biogeographic reconstruction for Cissampelideae. Cissampelideae began to diversify in Asia in the latest Cretaceous and subsequently dispersed to South America around the Cretaceous-Palaeogene boundary. Two dispersal events from Asia to Africa occurred in the Early Eocene and the Late Eocene-Late Oligocene, respectively. These findings provide guidelines and practical methods for mitigating the effects of homoplastic morphological characters on fossil placements and Bayesian tip-dating, as well as insights into the past tropical floristic exchanges among different continents.

2.
Mol Phylogenet Evol ; 186: 107868, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37394080

RESUMEN

Rapid diversification of a group is often associated with exploiting an ecological opportunity and/or the evolution of a key innovation. However, how the interplay of such abiotic and biotic factors correlates with organismal diversification has been rarely documented in empirical studies, especially for organisms inhabiting drylands. Fumarioideae is the largest subfamily in Papaveraceae and is mainly distributed in temperate regions of the Northern Hemisphere. Here, we used one nuclear (ITS) and six plastid (rbcL, atpB, matK, rps16, trnL-F, and trnG) DNA sequences to investigate the spatio-temporal patterns of diversification and potential related factors of this subfamily. We first present the most comprehensive phylogenetic analysis of Fumarioideae to date. The results of our integrated molecular dating and biogeographic analyses indicate that the most recent common ancestor of Fumarioideae started to diversify in Asia during the Upper Cretaceous, and then dispersed multiple times out of Asia in the Cenozoic. In particular, we discover two independent dispersal events from Eurasia to East Africa in the late Miocene, suggesting that the Arabian Peninsula might be an important exchange corridor between Eurasia and East Africa in the late Miocene. Within the Fumarioideae, increased speciation rates were detected in two groups, Corydalis and Fumariinae. Corydalis first experienced a burst of diversification in its crown group at âˆ¼ 42 Ma, and further accelerated diversification from the mid-Miocene onwards. During these two periods, Corydalis had evolved diverse life history types, which could have facilitated the colonization of diverse habitats originating from extensive orogenesis in the Northern Hemisphere as well as Asian interior desertification. Fumariinae underwent a burst of diversification at âˆ¼ 15 Ma, which temporally coincides with the increasing aridification in central Eurasia, but is markedly posterior to the shifts in habitat (from moist to arid) and in life history (from perennial to annual) and to range expansion from Asia to Europe, suggesting that Fumariinae species may have been pre-adapted to invade European arid habitats by the acquisition of annual life history. Our study provides an empirical case that documents the importance of pre-adaptation on organismal diversification in drylands and highlights the significant roles of the synergy of abiotic and biotic factors in promoting plant diversification.


Asunto(s)
Papaveraceae , Filogenia , Asia , Ecosistema , Secuencia de Bases , Filogeografía
3.
Nat Commun ; 14(1): 4021, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463899

RESUMEN

The Arctic tundra is a relatively young and new type of biome and is especially sensitive to the impacts of global warming. However, little is known about how the Arctic flora was shaped over time. Here we investigate the origin and evolutionary dynamics of the Arctic flora by sampling 32 angiosperm clades that together encompass 3626 species. We show that dispersal into the Arctic and in situ diversification within the Arctic have similar trends through time, initiating at approximately 10-9 Ma, increasing sharply around 2.6 Ma, and peaking around 1.0-0.7 Ma. Additionally, we discover the existence of a long-term dispersal corridor between the Arctic and western North America. Our results suggest that the initiation and diversification of the Arctic flora might have been jointly driven by progressive landscape and climate changes and sea-level fluctuations since the early Late Miocene. These findings have important conservation implications given rapidly changing climate conditions in the Arctic.


Asunto(s)
Ecosistema , Tundra , Regiones Árticas , Evolución Biológica , Cambio Climático
4.
Ann Bot ; 131(4): 685-695, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36721969

RESUMEN

BACKGROUND AND AIMS: Modern tropical rainforests house the highest biodiversity of Earth's terrestrial biomes and are distributed in three low-latitude areas. However, the biogeographical patterns and processes underlying the distribution of biodiversity among these three areas are still poorly known. Here, we used Tiliacoreae, a tribe of pantropical lianas with a high level of regional endemism, to provide new insights into the biogeographical relationships of tropical rainforests among different continents. METHODS: Based on seven plastid and two nuclear DNA regions, we reconstructed a phylogeny for Tiliacoreae with the most comprehensive sampling ever. Within the phylogenetic framework, we then estimated divergence times and investigated the spatiotemporal evolution of the tribe. KEY RESULTS: The monophyletic Tiliacoreae contain three major clades, which correspond to Neotropical, Afrotropical and Indo-Malesian/Australasian areas, respectively. Both Albertisia and Anisocycla are not monophyletic. The most recent common ancestor of Tiliacoreae occurred in Indo-Malesia, the Afrotropics and Neotropics in the early Eocene, then rapidly diverged into three major clades between 48 and 46 Ma. Three dispersals from Indo-Malesia to Australasia were inferred, one in the middle Eocene and two in the late Oligocene-late Miocene, and two dispersals from the Afrotropics to Indo-Malesia occurred in the late Eocene-Oligocene. CONCLUSIONS: The three main clades of Anisocycla correspond to three distinct genera [i.e. Anisocycla sensu stricto and two new genera (Georgesia and Macrophragma)]. Epinetrum is a member of Albertisia. Our findings highlight that sea-level fluctuations and climate changes in the Cenozoic have played important roles in shaping the current distribution and endemism of Tiliacoreae, hence contributing to the knowledge on the historical biogeography of tropical rainforests on a global scale.


Asunto(s)
Menispermaceae , Bosque Lluvioso , Filogenia , Filogeografía , Menispermaceae/genética , Plastidios/genética
5.
Mol Phylogenet Evol ; 181: 107712, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36693534

RESUMEN

Angiosperms, a trigger for the Cretaceous Terrestrial Revolution (KTR), underwent a rapid expansion and occupied all the environments during the Mid-Upper Cretaceous. Yet, Cretaceous biogeographic patterns and processes underlying the distribution of angiosperm diversity in the Northern Hemisphere are still poorly known. Here, we elucidated the biogeographic diversification of the angiosperm family Papaveraceae, an ancient Northern Hemisphere clade characterized by poor dispersal ability and high level of regional endemism. Based on both plastome and multi-locus datasets, we reconstructed a robust time-calibrated phylogeny that includes all currently recognized 45 genera of this family. Within the time-calibrated phylogenetic framework, we conducted 72 biogeographic analyses by testing the sensitivity of uncertainties of area delimitation, maxarea constraints, and the parameters of the model, i.e., j (describing jump-dispersal events) and w (modifying dispersal multiplier matrices), to ancestral range estimations. We also inferred ancestral habitat and ecological niches. Phylogenetic analyses strongly support Papaveraceae as monophyletic. Pteridophylloideae is strongly supported as sister to Hypecoideae-Fumarioideae. Our results indicate that the j parameter and number of predefined areas strongly affect ancestral range estimates, generating questionable ancestral ranges, whereas maxarea constraint and w parameter have no effect and improve model fit. After accounting for these uncertainties, our results indicate that Papaveraceae differentiated in Asian wet forests during the Lower Cretaceous and subsequently occupied the Asian and western North American arid and open areas. Three dispersals from Asia to western North America via the Bering land bridge occurred in the Mid-Upper Cretaceous, largely in agreement with the KTR. Habitat shift and ecological niche divergence resulted in the subsequent disjunctions between Asia and western North America. These findings suggest that the interplay of range expansion and niche divergence-driven vicariance might have shaped Cretaceous biogeographic patterns of angiosperms with Papaveraceae-like ecological requirements and dispersal abilities in the Northern Hemisphere, hence contributing to the knowledge on the geographic expansion of angiosperms during the KTR.


Asunto(s)
Magnoliopsida , Papaver , Papaveraceae , Filogenia , Filogeografía
6.
J Integr Plant Biol ; 64(11): 2126-2134, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36083596

RESUMEN

The dominant species of a biome can be regarded as its genuine indicator. Evergreen broadleaved forests (EBLFs) in subtropical East Asia harbor high levels of species biodiversity and endemism and are vital to regional carbon storage and cycling. However, the historical assembly of this unique biome is still controversial. Fagaceae is the most essential family in East Asian subtropical EBLFs and its dominant species are vital for the existence of this biome. Here, we used the dominant Fagaceae species to shed light on the dynamic process of East Asian subtropical EBLFs over time. Our results indicate high precipitation in summer and low temperature in winter are the most influential climatic factors for the distribution of East Asian subtropical EBLFs. Modern East Asian subtropical EBLFs did not begin to appear until 23 Ma, subsequently experienced a long-lasting development in the Miocene and markedly deteriorated at about 4 Ma, driven jointly by orogenesis and paleoclimate. We also document that there is a lag time between when one clade invaded the region and when its members become dominant species within the region. This study may improve our ability to predict and mitigate the threats to biodiversity of East Asian subtropical EBLFs and points to a new path for future studies involving multidisciplinary methods to explore the assembly of regional biomes.


Asunto(s)
Fagaceae , Árboles , Clima Tropical , Bosques , Biodiversidad
7.
Proc Natl Acad Sci U S A ; 119(34): e2207199119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969742

RESUMEN

Caves are home to unique and fragile biotas with high levels of endemism. However, little is known about how the biotic colonization of caves has developed over time, especially in caves from middle and low latitudes. Subtropical East Asia holds the world's largest karst landform with numerous ancient caves, which harbor a high diversity of cave-dwelling organisms and are regarded as a biodiversity hotspot. Here, we assess the temporal dynamics of biotic colonization of subtropical East Asian caves through a multi-taxon analysis with representatives of green plants, animals, and fungi. We then investigate the consequences of paleonviromental changes on the colonization dynamics of these caves in combination with reconstructions of vegetation, temperature, and precipitation. We discover that 88% of cave colonization events occurred after the Oligocene-Miocene boundary, and organisms from the surrounding forest were a major source for subtropical East Asian cave biodiversity. Biotic colonization of subtropical East Asian caves during the Neogene was subject to periods of acceleration and decrease, in conjunction with large-scale, seasonal climatic changes and evolution of local forests. This study highlights the long-term evolutionary interaction between surface and cave biotas; our climate-vegetation-relict model proposed for the subtropical East Asian cave biota may help explain the evolutionary origins of other mid-latitude subterranean biotas.


Asunto(s)
Biodiversidad , Cuevas , Bosques , Animales , Asia Oriental , Filogenia
8.
Proc Biol Sci ; 289(1966): 20211308, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34982948

RESUMEN

Ex situ origins and dispersal of taxa have played important roles in the assembly of island-like biodiversity hotspots. Insular limestone karsts in Southeast Asia are hotspots of biodiversity and endemism, but the immigration processes of their unique floras are still poorly known. Here, we used Gesneriaceae as a proxy to investigate the immigration dynamics of tropical and subtropical Southeast Asian karst floras. We present the most comprehensive phylogenetic analysis of the Old World gesneriads to date based on twelve loci. By estimating divergence times and reconstructing ancestral states (habitat, soil type and range), we found that immigration into subtropical Southeast Asian karst floras first occurred in the Early Miocene, with two peaks in the Early-Middle Miocene and the Pliocene-Early Pleistocene, whereas immigration into tropical Southeast Asian karsts initiated in the Late Eocene, with two peaks in the Late Oligocene and the Late Miocene. We also discover that Southeast Asian karst biodiversity comprises immigrant pre-adapted lineages and descendants from local acid soil ancestors, although niche shift from acid soil to karst in tropical Southeast Asian islands was lacking. This study advances our understanding of the historical assembly of Southeast Asian karst floras.


Asunto(s)
Carbonato de Calcio , Emigración e Inmigración , Biodiversidad , Filogenia , Filogeografía , Suelo
9.
Proc Biol Sci ; 288(1948): 20210281, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33823668

RESUMEN

The evolutionary history of organisms with poor dispersal abilities usually parallels geological events. Collisions of the Indian and Arabian plates with Eurasia greatly changed Asian topography and affected regional and global climates as well as biotic evolution. However, the geological evolution of Asia related to these two collisions remains debated. Here, we used Eranthis, an angiosperm genus with poor seed dispersal ability and a discontinuous distribution across Eurasia, to shed light on the orogenesis of the Qinghai-Tibetan, Iranian and Mongolian Plateaus. Our phylogenetic analyses show that Eranthis comprises four major geographical clades: east Qinghai-Tibetan Plateau clade (I-1), North Asian clade (I-2), west Qinghai-Tibetan Plateau clade (II-1) and Mediterranean clade (II-2). Our molecular dating and biogeographic analyses indicate that within Eranthis, four vicariance events correlate well with the two early uplifts of the Qinghai-Tibetan Plateau during the Late Eocene and the Oligocene-Miocene boundary and the two uplifts of the Iranian Plateau during the Middle and Late Miocene. The origin and divergence of the Mongolian Plateau taxa are related to the two uplifts of the Mongolian Plateau during the Middle and Late Miocene. Additionally, our results are in agreement with the hypothesis that the central part of Tibet only reached an altitude of less than 2.3 km at approximately 40 Ma. This study highlights that organismal evolution could be related to the formation of the three great Asian plateaus, hence contributing to the knowledge on the timing of the key tectonic events in Asia.


Asunto(s)
Ranunculaceae , Asia , Irán , Filogenia , Filogeografía , Tibet
10.
Cladistics ; 36(5): 447-457, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-34618951

RESUMEN

Temperate South American-Asian disjunct distributions are the most unusual in organisms, and challenging to explain. Here, we address the origin of this unusual disjunction in Lardizabalaceae using explicit models and molecular data. The family (c.40 species distributed in ten genera) also provides an opportunity to explore the historical assembly of East Asian subtropical evergreen broadleaved forests, a typical and luxuriant vegetation in East Asia. DNA sequences of five plastid loci of 42 accessions representing 23 species of Lardizabalaceae (c. 57.5% of estimated species diversity), and 19 species from the six other families of Ranunculales, were used to perform phylogenetic analyses. By dating the branching events and reconstructing ancestral ranges, we infer that extant Lardizabalaceae dated to the Upper Cretaceous of East Asia and that the temperate South American lineage might have split from its East Asian sister group at c. 24.4 Ma. A trans-Pacific dispersal possibly by birds from East Asia to South America is plausible to explain the establishment of the temperate South American-East Asian disjunction in Lardizabalaceae. Diversification rate analyses indicate that net diversification rates of Lardizabalaceae experienced a significant increase around c. 7.5 Ma. Our findings suggest that the rapid rise of East Asian subtropical evergreen broadleaved forests occurred in the late Miocene, associated with the uplift of the Tibetan Plateau and the intensified East Asian monsoon, as well as the higher winter temperature and atmospheric CO2 levels.


Asunto(s)
Ranunculales/clasificación , Ranunculales/genética , ADN de Plantas , Asia Oriental , Bosques , Océano Pacífico , Filogenia , Plastidios/genética , Análisis de Secuencia de ADN
11.
Mol Phylogenet Evol ; 136: 44-52, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30951922

RESUMEN

Neotropical rainforests cover about half of the world's tropical rainforests and house most of the biodiversity available on Earth. Australasia has been suggested as a potential source for Neotropical diversity. However, it remains unclear whether megathermal lineages could indeed have migrated to South America though Antarctica. The Neotropical Anomospermeae (Menispermaceae) consists of large, canopy lianas and is entirely restricted to tropical lowland rainforests. The sister relationship identified between this group and its Australasian ally represents an excellent model to test hypotheses regarding past connections between those landmasses. In this study, we used six chloroplast and two nuclear DNA markers to reconstruct phylogenetic relationships within the Neotropical Anomospermeae (Menispermaceae). The phylogeny of this group was then used as basis to reconstruct its biogeographical history. The phylogenetic framework reconstructed here strongly supports the monophyly of the Neotropical Anomospermeae and recovers the species of Anomospermum in three different clades: (i) Anomospermum sect. Anomospermum plus Orthomene; (ii) Anomospermum grandifolium and A. solimoesanum (Anomospermum sect. Elissarrhena); and (iii) Anomospermum bolivianum (Anomospermum sect. Elissarrhena). Each of these clades is recognized as a different genus and the necessary taxonomic changes are proposed. Furthermore, the Neotropical Anomospermeae seems to have split from its Australasian sister-group at c. 62 Ma. Ancestral area reconstructions support an Australasian origin for the Neotropical Anomospermeae, providing additional support for the hypothesis that Australasia is a source of Neotropical diversity, with megathermal lineages having dispersed via Antarctica. The Neotropical Anomospermeae differentiated in the late Eocene and subsequently diversified rapidly into seven lineages, suggesting that Neotropical lowland rainforests resembling modern rainforests physiognomically and structurally might not have developed until the late Eocene. The Neotropical Anomospermeae exemplifies the contributions of Australasian migration to Neotropical diversity.


Asunto(s)
Sitios Genéticos , Menispermaceae/clasificación , Menispermaceae/genética , Filogenia , Filogeografía , Clima Tropical , Regiones Antárticas , Australasia , Biodiversidad , Núcleo Celular/genética , Variación Genética , Funciones de Verosimilitud , América del Sur , Factores de Tiempo
12.
PhytoKeys ; (100): 9-89, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29962890

RESUMEN

A monograph of Curarea, a neotropical genus in the plant family Menispermaceae, is presented. Curarea is distinguished from related genera by the combination of staminate flowers with sepals in two whorls and pistillate flowers with three petals, three carpels and usually elongated carpophores bearing three sessile drupelets. Nine species are recognised, amongst them two new to science, C. gentryana from Ecuador and C. barnebyana, from Ecuador and Peru. Additionally, two new combinations, C. iquitana and C. tomentocarpa, are proposed for distinct taxa recovered in a multivariate analysis of quantitative characters of the broadly distributed and morphologically variable C. toxicofera. The anatomy and morphology of species in the genus is documented, identification key, species descriptions, distribution maps and a preliminary conservation assessment for all accepted species are also provided. Of the nine species recognised here, C. barnebyana is assigned a preliminary status of Vulnerable, C. crassa (known only from the coastal Atlantic Forest in Brazil) and C. gentryana (endemic to western Ecuador) are both assigned a preliminary status of Endangered.

13.
Mol Phylogenet Evol ; 109: 11-20, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28049039

RESUMEN

Taiwan is a continental island lying at the boundary between the Eurasian and the Philippine tectonic plates and possesses high biodiversity. Southern Taiwan, viz. Hengchun Peninsula, is notably floristically different from northern Taiwan. The floristic origin and relationships of the Hengchun Peninsula have been rarely investigated in a phylogenetic context. In this study, data from six plastid and nuclear sequences were used to reconstruct phylogenetic relationships within Burasaieae (Menispermaceae), which mainly inhabits tropical rainforests. The tree-based comparisons indicate that the position of Tinospora sensu stricto conflicts significantly between the cpDNA and ITS trees. However, alternative hypothesis tests from the ITS data did not reject the result of the cpDNA data, which suggests that tree-based comparisons might sometimes generate an artificial incongruence, especially when markers with high homoplasy are used. Based on the combined cpDNA and ITS data, we present an inter-generic phylogenetic framework for Burasaieae. Sampled species of Tinospora are placed in three different clades, including Tinospora dentata from southern Taiwan and T. sagittata from mainland China in an unresolved position alongside six lineages of Burasaieae. By integrating lines of evidence from molecular phylogeny, divergence times, and morphology, we recognize the three Tinospora clades as three different genera, including Tinospora sensu stricto, a new genus (Paratinospora) for T. dentata and T. sagittata, and Hyalosepalum resurrected. Tinospora dentata, now endemic to the Hengchun Peninsula, originated from the Late Eocene (ca. 39Ma), greatly predating the formation of Taiwan. Our study suggests that the flora of the Hengchun Peninsula contains some ancient components that might have migrated from mainland China.


Asunto(s)
Menispermaceae/clasificación , China , ADN de Plantas/genética , Genes de Plantas , Especiación Genética , Menispermaceae/genética , Filogenia , Filogeografía , Proteínas de Plantas/genética , Plastidios/genética , Análisis de Secuencia de ADN , Taiwán
14.
Sci Rep ; 6: 27259, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251635

RESUMEN

The rise of angiosperms has been regarded as a trigger for the Cretaceous revolution of terrestrial ecosystems. However, the timeframe of the rise angiosperm-dominated herbaceous floras (ADHFs) is lacking. Here, we used the buttercup family (Ranunculaceae) as a proxy to provide insights into the rise of ADHFs. An integration of phylogenetic, molecular dating, ancestral state inferring, and diversification analytical methods was used to infer the early evolutionary history of Ranunculaceae. We found that Ranunculaceae became differentiated in forests between about 108-90 Ma. Diversification rates markedly elevated during the Campanian, mainly resulted from the rapid divergence of the non-forest lineages, but did not change across the Cretaceous-Paleogene boundary. Our data for Ranunculaceae indicate that forest-dwelling ADHFs may have appeared almost simultaneously with angiosperm-dominated forests during the mid-Cretaceous, whereas non-forest ADHFs arose later, by the end of the Cretaceous terrestrial revolution. Furthermore, ADHFs were relatively unaffected by the Cretaceous-Paleogene mass extinction.


Asunto(s)
Magnoliopsida/crecimiento & desarrollo , Ranunculaceae/crecimiento & desarrollo , Biodiversidad , Evolución Biológica , Ecosistema , Extinción Biológica , Magnoliopsida/genética , Filogenia , Ranunculaceae/genética
15.
PhytoKeys ; (38): 89-99, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25009439

RESUMEN

The new species Cissampelos arenicola M. Nee & R. Ortiz, from the Bolivian and Paraguayan Chaco is described, its affinities are discussed, and its preliminary conservation status is evaluated. The species is at present known from 13 collections from sand dunes or dry forests. Cissampelos arenicola is distinguished from all other American species in the genus by its ovate- to subreniform-trilobed leaves, 8-locular synandria, and relatively large, and scarcely ornamented endocarps. The most common perianth condition in the pistillate flowers of Cissampelos is one sepal and one antesepalous petal, and while these may vary in number, they are always found adaxial to the carpel, and although the southern African taxon called Cissampelos capensis, whose generic position is uncertain, superficially resembles Cissampelos arenicola, its sepals and petals are consistently lateral to the carpel and not adaxial.

16.
New Phytol ; 195(2): 470-478, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22548458

RESUMEN

• Modern tropical rainforests have the highest biodiversity of terrestrial biomes and are restricted to three low-latitude areas. However, the actual timeframe during which tropical rainforests began to appear on a global scale has been intensely disputed. Here, we used the moonseed family (Menispermaceae), an important physiognomic and structural component of tropical rainforests on a worldwide basis, to obtain new insights into the diversification of this biome. • We integrated phylogenetic, biogeographic and molecular dating methods to analyse temporal and spatial patterns of global diversification in Menispermaceae. • Importantly, a burst of moonseed diversification occurred in a narrow window of time, which coincides with the Cretaceous-Paleogene (K-Pg) boundary. Our data also suggest multiple independent migrations from a putative ancestral area of Indo-Malay into other tropical regions. • Our data for Menispermaceae suggest that modern tropical rainforests may have appeared almost synchronously throughout the three major tropical land areas close to, or immediately following, the K-Pg mass extinction.


Asunto(s)
Biodiversidad , Menispermaceae/fisiología , Lluvia , Árboles/fisiología , Clima Tropical , Teorema de Bayes , Funciones de Verosimilitud , Menispermaceae/genética , Filogenia , Factores de Tiempo
17.
Am J Bot ; 94(8): 1425-38, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21636510

RESUMEN

We used the chloroplast gene ndhF to reconstruct the phylogeny of the moonseed family (Menispermaceae), a morphologically diverse and poorly known cosmopolitan family of dioecious, primarily climbing plants. This study includes a worldwide sample of DNA sequences for 88 species representing 49 of the 70 genera of all eight traditionally recognized tribes. Phylogenetic relationships were estimated, and the Shimodaira-Hasegawa test was used to compare the likelihood of alternative phylogenetic hypotheses and to evaluate the monophyly of tribes currently in use. The monospecific Indo-Malesian Tinomiscium is sister to the remaining members of the family, within which are two major clades. Within these two clades, well-supported clades correspond to four of the eight traditionally recognized tribes, while others, such as Menispermeae, are polyphyletic. Mapping of major morphological characters on the phylogeny indicates that the crescent-shaped seed is derived from a straight seed, the tree habit has arisen multiple times, endosperm has been lost many times, but unicarpellate flowers evolved only once. Morphological synapomorphies for Menispermaceae include the presence of a condyle, a large embryo, and druplets. The phylogeny provides for the first time a detailed molecular-based assessment of relationships in Menispermaceae and clarifies our understanding of morphological diversification within the family.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...