Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(26): eabn1767, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776785

RESUMEN

Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained.

2.
Science ; 374(6573): 1370-1376, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34882461

RESUMEN

Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values. Recovery to 90% of old-growth values is fastest for soil (<1 decade) and plant functioning (<2.5 decades), intermediate for structure and species diversity (2.5 to 6 decades), and slowest for biomass and species composition (>12 decades). Network analysis shows three independent clusters of attribute recovery, related to structure, species diversity, and species composition. Secondary forests should be embraced as a low-cost, natural solution for ecosystem restoration, climate change mitigation, and biodiversity conservation.

3.
Transbound Emerg Dis ; 67(1): 377-387, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31529612

RESUMEN

Parvoviruses in the genera Bocaparvovirus (HBoV), Erythroparvovirus (B19) and Tetraparvovirus (PARV4) are the only autonomous parvoviruses known to be associated with human and non-human primates based on studies and clinical cases in humans worldwide and non-human primates in Asia and Africa. Here, the presence of these agents with pathogenic potential was assessed by PCR in blood and faeces from 55 howler monkeys, 112 white-face monkeys, 3 squirrel monkeys and 127 spider monkeys in Costa Rica and El Salvador. Overall, 3.7% (11/297) of the monkeys had HboV DNA, 0.67% (2/297) had B19 DNA, and 14.1% (42/297) had PARV4 DNA, representing the first detection of these viruses in New World Primates (NWP). Sex was significantly associated with the presence of HBoV, males having greater risk up to nine times compared with females. Captivity was associated with increased prevalence for PARV4 and when all viruses were analysed together. This study provides compelling molecular evidence of parvoviruses in NWPs and underscores the importance of future research aimed at understanding how these viruses behave in natural environments of the Neotropics and what variables may favour their presence and transmission.


Asunto(s)
Haplorrinos/virología , Infecciones por Parvoviridae/veterinaria , Parvovirinae/aislamiento & purificación , Primates/virología , Animales , Bocavirus/genética , Bocavirus/aislamiento & purificación , América Central/epidemiología , Heces/virología , Femenino , Humanos , Masculino , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/virología , Parvovirinae/genética , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia
4.
Glob Chang Biol ; 20(10): 3177-90, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24817483

RESUMEN

Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.


Asunto(s)
Biomasa , Monitoreo del Ambiente/métodos , Modelos Teóricos , Árboles/fisiología , Clima Tropical , Carbono , Modelos Biológicos , Análisis de Regresión , Gravedad Específica , Madera/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...