Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839301

RESUMEN

Phospholipids are asymmetrically distributed at the plasma membrane. This asymmetric lipid distribution is transiently altered during calcium-regulated exocytosis but the impact of this transient remodeling on presynaptic function is currently unknown. As PhosphoLipid SCRamblase 1 (PLSCR1) randomizes phospholipid distribution between the two leaflets of the plasma membrane in response to calcium activation, we set out to determine its role in neurotransmission. We report here that PLSCR1 is expressed in cerebellar granule cells (GrCs) and that PLSCR1-dependent phosphatidylserine egress occurred at synapses in response to neuron stimulation. Synaptic transmission is impaired at GrC Plscr1 -/- synapses and both PS egress and synaptic vesicle endocytosis are inhibited in Plscr1 -/- cultured neurons from male and female mice, demonstrating that PLSCR1 controls phospholipid asymmetry remodeling and synaptic vesicle retrieval following neurotransmitter release. Altogether, our data reveal a novel key role for PLSCR1 in synaptic vesicle recycling and provide the first evidence that phospholipid scrambling at the plasma membrane is a prerequisite for optimal presynaptic performance.Significance statement During calcium-regulated exocytosis, phospholipids like phosphatidylserine (PS) undergo dynamic remodeling. Phospholipid Scramblase-1 (PLSCR1) belongs to a family of proteins able to randomize lipids at the cell surface in response to intracellular Ca2+ increases. Whether PLSCR1 and PS egress have a role during neurotransmission is unknown. We show that PLSCR1 expression is restricted to specific brain regions capable of sustaining neurotransmission during high firing rates. In the absence of PLSCR1, synaptic transmission is impaired, and both PS egress and synaptic vesicle endocytosis are hindered. This study highlights the pivotal role of PLSCR1 in regulating optimal presynaptic performance by redistributing phospholipid at the plasma membrane to control compensatory endocytosis.

2.
Front Mol Biosci ; 11: 1355963, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645276

RESUMEN

CPPs, or Cell-Penetrating Peptides, offer invaluable utility in disease treatment due to their ability to transport various therapeutic molecules across cellular membranes. Their unique characteristics, such as biocompatibility and low immunogenicity, make them ideal candidates for delivering drugs, genes, or imaging agents directly into cells. This targeted delivery enhances treatment efficacy while minimizing systemic side effects. CPPs exhibit versatility, crossing biological barriers and reaching intracellular targets that conventional drugs struggle to access. This capability holds promise in treating a wide array of diseases, including cancer, neurodegenerative disorders, and infectious diseases, offering a potent avenue for innovative and targeted therapies, yet their precise mechanism of cell entry is far from being fully understood. In order to correct Cu dysregulation found in various pathologies such as Alzheimer disease, we have recently conceived a peptide Cu(II) shuttle, based on the αR5W4 CPP, which, when bound to Cu(II), is able to readily enter a neurosecretory cell model, and release bioavailable Cu in cells. Furthermore, this shuttle has the capacity to protect cells in culture against oxidative stress-induced damage which occurs when Cu binds to the Aß peptide. The aim of this study was therefore to characterize the cell entry route used by this shuttle and determine in which compartment Cu is released. Pharmacological treatments, siRNA silencing and colocalization experiments with GFP-Rab fusion proteins, indicate that the shuttle is internalized by an ATP-dependent endocytosis pathway involving both Rab5 and Rab14 endosomes route and suggest an early release of Cu from the shuttle.

4.
Front Mol Biosci ; 10: 1163545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091866

RESUMEN

Although there is mounting evidence indicating that lipids serve crucial functions in cells and are implicated in a growing number of human diseases, their precise roles remain largely unknown. This is particularly true in the case of neurosecretion, where fusion with the plasma membrane of specific membrane organelles is essential. Yet, little attention has been given to the role of lipids. Recent groundbreaking research has emphasized the critical role of lipid localization at exocytotic sites and validated the essentiality of fusogenic lipids, such as phospholipase D (PLD)-generated phosphatidic acid (PA), during membrane fusion. Nevertheless, the regulatory mechanisms synchronizing the synthesis of these key lipids and neurosecretion remain poorly understood. The vacuolar ATPase (V-ATPase) has been involved both in vesicle neurotransmitter loading and in vesicle fusion. Thus, it represents an ideal candidate to regulate the fusogenic status of secretory vesicles according to their replenishment state. Indeed, the cytosolic V1 and vesicular membrane-associated V0 subdomains of V-ATPase were shown to dissociate during the stimulation of neurosecretory cells. This allows the subunits of the vesicular V0 to interact with different proteins of the secretory machinery. Here, we show that V0a1 interacts with the Arf nucleotide-binding site opener (ARNO) and promotes the activation of the Arf6 GTPase during the exocytosis in neuroendocrine cells. When the interaction between V0a1 and ARNO was disrupted, it resulted in the inhibition of PLD activation, synthesis of phosphatidic acid during exocytosis, and changes in the timing of fusion events. These findings indicate that the separation of V1 from V0 could function as a signal to initiate the ARNO-Arf6-PLD1 pathway and facilitate the production of phosphatidic acid, which is essential for effective exocytosis in neuroendocrine cells.

5.
Chem Sci ; 13(40): 11829-11840, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36320914

RESUMEN

Copper (Cu) in its ionic forms is an essential element for mammals and its homeostasis is tightly controlled. Accordingly, Cu-dyshomeostasis can be lethal as is the case in the well-established genetic Wilson's and Menkes diseases. In Alzheimer's disease (AD), Cu-accumulation occurs in amyloid plaques, where it is bound to the amyloid-beta peptide (Aß). In vitro, Cu-Aß is competent to catalyze the production of reactive oxygen species (ROS) in the presence of ascorbate under aerobic conditions, and hence Cu-Aß is believed to contribute to the oxidative stress in AD. Several molecules that can recover extracellular Cu from Aß and transport it back into cells with beneficial effects in cell culture and transgenic AD models were identified. However, all the Cu-shuttles currently available are not satisfactory due to various potential limitations including ion selectivity and toxicity. Hence, we designed a novel peptide-based Cu shuttle with the following properties: (i) it contains a Cu(ii)-binding motif that is very selective to Cu(ii) over all other essential metal ions; (ii) it is tagged with a fluorophore sensitive to Cu(ii)-binding and release; (iii) it is made of a peptide platform, which is very versatile to add new functions. The work presented here reports on the characterization of AKH-αR5W4NBD, which is able to transport Cu ions selectively into PC12 cells and the imported Cu appeared bioavailable, likely via reductive release induced by glutathione. Moreover, AKH-αR5W4NBD was able to withdraw Cu from the Aß1-16 peptide and consequently inhibited the Cu-Aß based reactive oxygen species production and related cell toxicity. Hence, AKH-αR5W4NBD could be a valuable new tool for Cu-transport into cells and suitable for mechanistic studies in cell culture, with potential applications in restoring Cu-homeostasis in Cu-related diseases such as AD.

6.
Cancer Lett ; 543: 215765, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35680072

RESUMEN

Neuroendocrine tumors constitute a heterogeneous group of tumors arising from hormone-secreting cells and are generally associated with a dysfunction of secretion. Pheochromocytoma (Pheo) is a neuroendocrine tumor that develops from chromaffin cells of the adrenal medulla, and is responsible for an excess of catecholamine secretion leading to severe clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Surprisingly, while the hypersecretory activity of Pheo is well known to pathologists and clinicians, it has never been carefully explored at the cellular and molecular levels. In the present study, we have combined catecholamine secretion measurement by carbon fiber amperometry on human tumor cells directly cultured from freshly resected Pheos, with the analysis by mass spectrometry of the exocytotic proteins differentially expressed between the tumor and the matched adjacent non-tumor tissue. In most patients, catecholamine secretion recordings from single Pheo cells revealed a higher number of exocytic events per cell associated with faster kinetic parameters. Accordingly, we unravel significant tumor-associated modifications in the expression of key proteins involved in different steps of the calcium-regulated exocytic pathway. Altogether, our findings indicate that dysfunction of the calcium-regulated exocytosis at the level of individual Pheo cell is a cause of the tumor-associated hypersecretion of catecholamines.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Médula Suprarrenal , Feocromocitoma , Neoplasias de las Glándulas Suprarrenales/metabolismo , Médula Suprarrenal/metabolismo , Calcio , Calcio de la Dieta , Catecolaminas/metabolismo , Exocitosis , Humanos , Feocromocitoma/metabolismo
7.
Cancer Lett ; 524: 232-244, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637845

RESUMEN

Increasingly common, neuroendocrine tumors (NETs) are regarded nowadays as neoplasms potentially causing debilitating symptoms and life-threatening medical conditions. Pheochromocytoma is a NET that develops from chromaffin cells of the adrenal medulla, and is responsible for an excessive secretion of catecholamines. Consequently, patients have an increased risk for clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Somatostatin analogues are among the main anti-secretory medical drugs used in current clinical practice in patients with NETs. However, their impact on pheochromocytoma-associated catecholamine hypersecretion remains incompletely explored. This study investigated the potential efficacy of octreotide and pasireotide (SOM230) on human tumor cells directly cultured from freshly resected pheochromocytomas using an implemented catecholamine secretion measurement by carbon fiber amperometry. SOM230 treatment efficiently inhibited nicotine-induced catecholamine secretion both in bovine chromaffin cells and in human tumor cells whereas octreotide had no effect. Moreover, SOM230 specifically decreased the number of exocytic events by impairing the stimulation-evoked calcium influx as well as the nicotinic receptor-activated inward current in human pheochromocytoma cells. Altogether, our findings indicate that SOM230 acts as an inhibitor of catecholamine secretion through a mechanism involving the nicotinic receptor and might be considered as a potential anti-secretory treatment for patients with pheochromocytoma.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/tratamiento farmacológico , Tumores Neuroendocrinos/tratamiento farmacológico , Feocromocitoma/tratamiento farmacológico , Somatostatina/análogos & derivados , Neoplasias de las Glándulas Suprarrenales/metabolismo , Neoplasias de las Glándulas Suprarrenales/patología , Catecolaminas/biosíntesis , Catecolaminas/metabolismo , Línea Celular Tumoral , Humanos , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Octreótido/farmacología , Feocromocitoma/metabolismo , Feocromocitoma/patología , Somatostatina/farmacología
8.
Adv Biol Regul ; 83: 100844, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34876384

RESUMEN

Calcium-regulated exocytosis is a multi-step process that allows specialized secretory cells to release informative molecules such as neurotransmitters, neuropeptides, and hormones for intercellular communication. The biogenesis of secretory vesicles from the Golgi cisternae is followed by their transport towards the cell periphery and their docking and fusion to the exocytic sites of the plasma membrane allowing release of vesicular content. Subsequent compensatory endocytosis of the protein and lipidic constituents of the vesicles maintains cell homeostasis. Despite the fact that lipids represent the majority of membrane constituents, little is known about their contribution to these processes. Using a combination of electrochemical measurement of single chromaffin cell catecholamine secretion and electron microscopy of roof-top membrane sheets associated with genetic, silencing and pharmacological approaches, we recently reported that diverse phosphatidic acid (PA) species regulates catecholamine release efficiency by controlling granule docking and fusion kinetics. The enzyme phospholipase D1 (PLD1), producing PA from phosphatidylcholine, seems to be the major responsible of these effects in this model. Here, we extended this work using spinning disk confocal microscopy showing that inhibition of PLD activity also reduced the velocity of granules undergoing a directed motion. Furthermore, a dopamine ß-hydroxylase (DßH) internalization assay revealed that PA produced by PLD is required for an optimal recovery of vesicular membrane content by compensatory endocytosis. Thus, among numerous roles that have been attributed to PA our work gives core to the key regulatory role in secretion that has been proposed in different cell models. Few leads to explain these multiple functions of PA along the secretory pathway are discussed.


Asunto(s)
Células Neuroendocrinas , Fosfolipasa D , Endocitosis/genética , Exocitosis/fisiología , Humanos , Células Neuroendocrinas/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Vesículas Secretoras/genética , Vesículas Secretoras/metabolismo
9.
Nat Metab ; 3(8): 1071-1090, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34341568

RESUMEN

Metabolic health depends on the brain's ability to control food intake and nutrient use versus storage, processes that require peripheral signals such as the adipocyte-derived hormone, leptin, to cross brain barriers and mobilize regulatory circuits. We have previously shown that hypothalamic tanycytes shuttle leptin into the brain to reach target neurons. Here, using multiple complementary models, we show that tanycytes express functional leptin receptor (LepR), respond to leptin by triggering Ca2+ waves and target protein phosphorylation, and that their transcytotic transport of leptin requires the activation of a LepR-EGFR complex by leptin and EGF sequentially. Selective deletion of LepR in tanycytes blocks leptin entry into the brain, inducing not only increased food intake and lipogenesis but also glucose intolerance through attenuated insulin secretion by pancreatic ß-cells, possibly via altered sympathetic nervous tone. Tanycytic LepRb-EGFR-mediated transport of leptin could thus be crucial to the pathophysiology of diabetes in addition to obesity, with therapeutic implications.


Asunto(s)
Encéfalo/metabolismo , Células Ependimogliales/metabolismo , Receptores ErbB/metabolismo , Leptina/metabolismo , Metabolismo de los Lípidos , Páncreas/metabolismo , Receptores de Leptina/metabolismo , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Metabolismo Energético , Células Secretoras de Insulina/metabolismo , Fosforilación
10.
Nanoscale Adv ; 3(24): 6940-6948, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36132366

RESUMEN

Advances in microscopy technology have prompted efforts to improve the reagents required to recognize specific molecules within the intracellular environment. For high-resolution electron microscopy, conjugation of selective binders originating from the immune response arsenal to gold nanoparticles (AuNPs) as contrasting agents is the method of choice to obtain labeling tools. However, conjugation of the minimal sized 15 kDa nanobody (Nb) to AuNPs remains challenging in comparison to the conjugation of 150 kDa IgG to AuNPs. Herein, effective Nb-AuNP assemblies are built using the selective and almost irreversible non-covalent associations between two peptide sequences deriving from a p53 heterotetramer domain variant. The 15 kDa GFP-binding Nb is fused to one dimerizing motif to obtain a recombinant Nb dimer with improved avidity for GFP while the other complementing dimerizing motif is equipped with thiols and grafted to a 2.4 nm substituted thiobenzoate-coordinated AuNP via thiolate exchange. After pegylation, the modified AuNPs are able to non-covalently anchor Nb dimers and the subsequent complexes demonstrate the ability to form immunogold label GFP-protein fusions within various subcellular locations. These tools open an avenue for precise localization of targets at high resolution by electron microscopy.

11.
Methods Mol Biol ; 2233: 43-51, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33222126

RESUMEN

Plasma membrane proteins are amenable to endocytosis assays since they are easily labeled by reagents applied in the extracellular medium. This has been widely exploited to study constitutive endocytosis or ligand-induced receptor endocytosis. Compensatory endocytosis is the mechanism by which components of secretory vesicles are retrieved after vesicle fusion with the plasma membrane in response to cell stimulation and a rise in intracellular calcium. Luminal membrane proteins from secretory vesicles are therefore transiently exposed at the plasma membrane. Here, we described an antibody-based method to monitor compensatory endocytosis in chromaffin cells and present an image-based analysis to quantify endocytic vesicles distribution.


Asunto(s)
Anticuerpos/química , Endocitosis/genética , Biología Molecular/métodos , Vesículas Transportadoras/ultraestructura , Glándulas Suprarrenales/ultraestructura , Calcio/metabolismo , Células Cromafines/ultraestructura , Exocitosis/genética , Humanos , Fusión de Membrana/genética , Vesículas Secretoras/ultraestructura
12.
Molecules ; 25(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007971

RESUMEN

Increasing evidence indicates that native mu and delta opioid receptors can associate to form heteromers in discrete brain neuronal circuits. However, little is known about their signaling and trafficking. Using double-fluorescent knock-in mice, we investigated the impact of neuronal co-expression on the internalization profile of mu and delta opioid receptors in primary hippocampal cultures. We established ligand selective mu-delta co-internalization upon activation by 1-[[4-(acetylamino)phenyl]methyl]-4-(2-phenylethyl)-4-piperidinecarboxylic acid, ethyl ester (CYM51010), [d-Ala2, NMe-Phe4, Gly-ol5]enkephalin (DAMGO), and deltorphin II, but not (+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80), morphine, or methadone. Co-internalization was driven by the delta opioid receptor, required an active conformation of both receptors, and led to sorting to the lysosomal compartment. Altogether, our data indicate that mu-delta co-expression, likely through heteromerization, alters the intracellular fate of the mu opioid receptor, which provides a way to fine-tune mu opioid receptor signaling. It also represents an interesting emerging concept for the development of novel therapeutic drugs and strategies.


Asunto(s)
Receptores Opioides delta/antagonistas & inhibidores , Receptores Opioides mu/antagonistas & inhibidores , Animales , Células Cultivadas , Endocitosis , Hipocampo/citología , Ligandos , Lisosomas , Ratones Endogámicos C57BL , Neuronas/metabolismo , Piperidinas/farmacología , Multimerización de Proteína , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo
13.
Cell Rep ; 32(7): 108026, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32814056

RESUMEN

Specific forms of fatty acids are well known to have beneficial health effects, but their precise mechanism of action remains elusive. Phosphatidic acid (PA) produced by phospholipase D1 (PLD1) regulates the sequential stages underlying secretory granule exocytosis in neuroendocrine chromaffin cells, as revealed by pharmacological approaches and genetic mouse models. Lipidomic analysis shows that secretory granule and plasma membranes display distinct and specific composition in PA. Secretagogue-evoked stimulation triggers the selective production of several PA species at the plasma membrane near the sites of active exocytosis. Rescue experiments in cells depleted of PLD1 activity reveal that mono-unsaturated PA restores the number of exocytotic events, possibly by contributing to granule docking, whereas poly-unsaturated PA regulates fusion pore stability and expansion. Altogether, this work provides insight into the roles that subspecies of the same phospholipid may play based on their fatty acyl chain composition.


Asunto(s)
Exocitosis/genética , Células Neuroendocrinas/metabolismo , Ácidos Fosfatidicos/metabolismo , Animales , Humanos , Ratones
14.
J Cell Sci ; 133(16)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32737221

RESUMEN

Rho GTPases play a key role in various membrane trafficking processes. RhoU is an atypical small Rho GTPase related to Rac/Cdc42, which possesses unique N- and C-terminal domains that regulate its function and its subcellular localization. RhoU localizes at the plasma membrane, on endosomes and in cell adhesion structures where it governs cell signaling, differentiation and migration. However, despite its endomembrane localization, RhoU function in vesicular trafficking has been unexplored. Here, we identified intersectins (ITSNs) as new binding partners for RhoU and showed that the second PxxP motif at the N terminus of RhoU mediated interactions with the SH3 domains of ITSNs. To evaluate the function of RhoU and ITSNs in vesicular trafficking, we used fluorescent transferrin as a cargo for uptake experiments. We showed that silencing of either RhoU or ITSN2, but not ITSN1, increased transferrin accumulation in early endosomes, resulting from a defect in fast vesicle recycling. Concomitantly, RhoU and ITSN2 colocalized to a subset of Rab4-positive vesicles, suggesting that a RhoU-ITSN2 interaction may occur on fast recycling endosomes to regulate the fate of vesicular cargos.


Asunto(s)
Endosomas , Proteínas de Unión al GTP rho , Proteínas Adaptadoras del Transporte Vesicular , Adhesión Celular , Endosomas/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
15.
Cancers (Basel) ; 12(7)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664294

RESUMEN

Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.

16.
IUBMB Life ; 72(4): 544-552, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31859439

RESUMEN

Besides a fundamental structural role at the plasma membrane, spectrin- and actin-based skeletons have been proposed to participate in various processes including vesicular trafficking. Neuroendocrine cells release hormones and neuropeptides through calcium-regulated exocytosis, a process that is coordinated by a fine remodeling of the actin cytoskeleton. We describe here that calcium-regulated exocytosis is impaired in chromaffin and PC12 cells with reduced αII-spectrin expression levels. Using yeast two-hybrid screening, we show that neuronal Wiskott-Aldrich Syndrome protein (N-WASP) is a partner of the αII-spectrin SH3 domain and demonstrate that secretagogue-evoked N-WASP recruitment at cell periphery is blocked in the absence of αII-spectrin. Additionally, experiments performed with ectopically expressed αII-spectrin mutant unable to bind N-WASP indicated that the interaction between SH3 domain and N-WASP is pivotal for neuroendocrine secretion. Our results extend the list of spectrin interactors and strengthen the idea that αII-spectrin is an important scaffold protein that gathers crucial actin-related players of the exocytic machinery.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Cromafines/metabolismo , Proteínas de Microfilamentos/metabolismo , Células Neuroendocrinas/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Animales , Calcio/metabolismo , Proteínas Portadoras/genética , Catecolaminas/metabolismo , Bovinos , Exocitosis/fisiología , Hormona del Crecimiento/metabolismo , Proteínas de Microfilamentos/genética , Mutación , Células PC12 , Ratas , Técnicas del Sistema de Dos Híbridos , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Dominios Homologos src
17.
Front Cell Neurosci ; 12: 189, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30034324

RESUMEN

In humans, Down Syndrome (DS) is a condition caused by partial or full trisomy of chromosome 21. Genes present in the DS critical region can result in excess gene dosage, which at least partially can account for DS phenotype. Although regulator of calcineurin 1 (RCAN1) belongs to this region and its ectopic overexpression in neurons impairs transmitter release, synaptic plasticity, learning and memory, the relative contribution of RCAN1 in a context of DS has yet to be clarified. In the present work, we utilized an in vitro model of DS, the CTb neuronal cell line derived from the brain cortex of a trisomy 16 (Ts16) fetal mouse, which reportedly exhibits acetylcholine release impairments compared to CNh cells (a neuronal cell line established from a normal littermate). We analyzed single exocytotic events by using total internal reflection fluorescence microscopy (TIRFM) and the vesicular acetylcholine transporter fused to the pH-sensitive green fluorescent protein (VAChT-pHluorin) as a reporter. Our analyses showed that, compared with control CNh cells, the trisomic CTb cells overexpress RCAN1, and they display a reduced number of Ca2+-induced exocytotic events. Remarkably, RCAN1 knockdown increases the extent of exocytosis at levels comparable to those of CNh cells. These results support a critical contribution of RCAN1 to the exocytosis process in the trisomic condition.

18.
Neuroendocrinology ; 107(3): 228-236, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29949805

RESUMEN

BACKGROUND: 18F-FDOPA positron emission tomography/computed tomography (PET/CT) is a sensitive nuclear imaging technology for the diagnosis of pheochromocytomas (PHEO). However, its utility in determining predictive factors for the secretion of catecholamines remains poorly studied. METHODS: Thirty-nine histologically confirmed PHEO were included in this retrospective single-center study. Patients underwent 18F-FDOPA PET/CT before surgery, with an evaluation of several uptake parameters (standardized uptake values [SUVmax and SUVmean] and the metabolic burden [MB] calculated as follows: MB = SUVmean × tumor volume) and measurement of plasma and/or urinary metanephrine (MN), normetanephrine (NM), and chromogranin A. Thirty-five patients were screened for germline mutations in the RET, SDHx, and VHL genes. Once resected, primary cultures of 5 PHEO were used for real-time measurement of catecholamine release by carbon fiber amperometry. RESULTS: The MB of the PHEO positively correlated with 24-h urinary excretion of NM (r = 0.64, p < 0.0001), MN (r = 0.49, p = 0.002), combined MN and NM (r = 0.75, p < 0.0001), and eventually plasma free levels of NM (r = 0.55, p = 0.006). In the mutated patients (3 SDHD, 2 SDHB, 3 NF1, 1 VHL, and 3 RET), a similar correlation was observed between MB and 24-h urinary combined MN and NM (r = 0.86, p = 0.0012). For the first time, we demonstrate a positive correlation between the PHEO-to-liver SUVmax ratio and the mean number of secretory granule fusion events of the corresponding PHEO cells revealed by amperometric spikes (p = 0.01). CONCLUSION: While the 18F-FDOPA PET/CT MB of PHEO strongly correlates with the concentration of MN, amperometric recordings suggest that 18F-FDOPA uptake could be enhanced by overactivity of catecholamine exocytosis.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/metabolismo , Catecolaminas/metabolismo , Feocromocitoma/metabolismo , Neoplasias de las Glándulas Suprarrenales/diagnóstico por imagen , Adulto , Anciano , Dihidroxifenilalanina/análogos & derivados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Feocromocitoma/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Retrospectivos
19.
Small GTPases ; 8(2): 122-127, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-27355516

RESUMEN

Altered Rho GTPase signaling has been linked to many types of cancer. As many small G proteins, Rho GTPases cycle between an active and inactive state thanks to specific regulators that catalyze exchange of GDP into GTP (Rho-GEF) or hydrolysis of GTP into GDP (Rho-GAP). Recent studies have shown that alteration takes place either at the level of Rho proteins themselves (expression levels, point mutations) or at the level of their regulators, mostly RhoGEFs and RhoGAPs. Most reports describe Rho GTPases gain of function that may participate to the tumorigenesis processes. In contrast, we have recently reported that decreased activities of Cdc42 and Rac1 as well as decreased expression of 2 Rho-GEFs, FARP1 and ARHGEF1, correlate with pheochromocytomas, a tumor developing in the medulla of the adrenal gland (Croisé et al., Endocrine Related Cancer, 2016). Here we highlight the major evidence and further study the correlation between Rho GTPases activities and expression levels of ARHGEF1 and FARP1. Finally we also discuss how the decrease of Cdc42 and Rac1 activities may help human pheochromocytomas to develop and comment the possible relationship between FARP1, ARHGEF1 and the 2 Rho GTPases Cdc42 and Rac1 in tumorigenesis.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/metabolismo , Médula Suprarrenal , Feocromocitoma/metabolismo , Proteína de Unión al GTP cdc42/antagonistas & inhibidores , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/patología , Animales , Carcinogénesis , Regulación hacia Abajo , Silenciador del Gen , Humanos , Células PC12 , Feocromocitoma/genética , Feocromocitoma/patología , Ratas , Proteína de Unión al GTP cdc42/deficiencia , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/deficiencia , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
20.
Endocr Relat Cancer ; 23(4): 281-93, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26911374

RESUMEN

Among small GTPases from the Rho family, Cdc42, RAC, and Rho are well known to mediate a large variety of cellular processes linked with cancer biology through their ability to cycle between an inactive (GDP-bound) and an active (GTP-bound) state. Guanine nucleotide exchange factors (GEFs) stimulate the exchange of GDP for GTP to generate the activated form, whereas the GTPase-activating proteins (GAPs) catalyze GTP hydrolysis, leading to the inactivated form. Modulation of Rho GTPase activity following altered expression of RHO-GEFs and/or RHO-GAPs has already been reported in various human tumors. However, nothing is known about the Rho GTPase activity or the expression of their regulators in human pheochromocytomas, a neuroendocrine tumor (NET) arising from chromaffin cells of the adrenal medulla. In this study, we demonstrate, through an ELISA-based activity assay, that Rac1 and Cdc42 activities decrease in human pheochromocytomas (PCCs) compared with the matched adjacent non-tumor tissue. Furthermore, through quantitative mass spectrometry (MS) approaches, we show that the expression of two RHO-GEF proteins, namely ARHGEF1 and FARP1, is significantly reduced in tumors compared with matched non-tumor tissue, whereas ARHGAP36 expression is increased. Moreover, siRNA-based knockdown of ARHGEF1 and FARP1 in PC12 cells leads to a significant inhibition of Rac1 and Cdc42 activities, respectively. Finally, a principal component analysis (PCA) of our dataset was able to discriminate PCC from non-tumor tissue and indicates a close correlation between Cdc42/Rac1 activity and FARP1/ARHGEF1 expression. Altogether, our findings reveal for the first time the importance of modulation of Rho GTPase activities and expression of their regulators in human PCCs.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/metabolismo , Feocromocitoma/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Humanos , Células PC12 , ARN Interferente Pequeño/genética , Ratas , Factores de Intercambio de Guanina Nucleótido Rho/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...