Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38790661

RESUMEN

Microenvironment and transcriptional plasticity generate subpopulations within the tumor, and the use of BRAF inhibitors (BRAFis) contributes to the rise and selection of resistant clones. We stochastically isolated subpopulations (C1, C2, and C3) from naïve melanoma and found that the clones demonstrated distinct morphology, phenotypic, and functional profiles: C1 was less proliferative, more migratory and invasive, less sensitive to BRAFis, less dependent on OXPHOS, more sensitive to oxidative stress, and less pigmented; C2 was more proliferative, less migratory and invasive, more sensitive to BRAFis, less sensitive to oxidative stress, and more pigmented; and C3 was less proliferative, more migratory and invasive, less sensitive to BRAFis, more dependent on OXPHOS, more sensitive to oxidative stress, and more pigmented. Hydrogen peroxide plays a central role in oxidative stress and cell signaling, and PRDXs are one of its main consumers. The intrinsically resistant C1 and C3 clones had lower MITF, PGC-1α, and PRDX1 expression, while C1 had higher AXL and decreased pigmentation markers, linking PRDX1 to clonal heterogeneity and resistance. PRDX2 is depleted in acquired BRAFi-resistant cells and acts as a redox sensor. Our results illustrate that decreased pigmentation markers are related to therapy resistance and decreased antioxidant defense.

2.
Sci Rep ; 7: 45867, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28361902

RESUMEN

Gastric epithelial cells differentiate throughout the third postnatal week in rats, and become completely functional by weaning time. When suckling is interrupted by early weaning (EW), cell proliferation and differentiation change in the gastric mucosa, and regulatory mechanisms might involve corticosterone activity. Here we used EW and RU486 (glucocorticoid receptor antagonist) to investigate the roles of corticosterone on differentiation of mucous neck (MNC) and zymogenic cells (ZC) in rats, and to evaluate whether effects persisted in young adults. MNC give rise to ZC, and mucin 6, Mist1, pepsinogen a5 and pepsinogen C are produced to characterize these cells. We found that in pups, EW augmented the expression of mucins, Mist1 and pepsinogen C at mRNA and protein levels, and it changed the number of MNC and ZC. Corticosterone regulated pepsinogen C expression, and MNC and ZC distributions. Further, the changes on MNC population and pepsinogen C were maintained until early- adult life. Therefore, by using EW as a model for altered corticosterone activity in rats, we demonstrated that the differentiation of secretory epithelial cells is sensitive to the type of nutrient in the lumen. Moreover, this environmental perception activates corticosterone to change maturation and reprogram cellular functions in adulthood.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corticosterona/metabolismo , Mucosa Gástrica/metabolismo , Destete , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Células Epiteliales/metabolismo , Ratas , Estómago/crecimiento & desarrollo
3.
Nutrition ; 30(3): 343-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24484684

RESUMEN

OBJECTIVES: The development of the gastrointestinal tract depends on many elements, including glucocorticoids. In the current study, we evaluated the effects of early weaning on corticosterone function and the growth of rat gastric mucosa. METHODS: By using Wistar rats submitted to early weaning at 15 d, we analyzed plasma corticosterone, corticosteroid-binding globulin (CBG), and glucocorticoid receptor (GR) distribution in the gastric epithelium. RESULTS: With the use of radioimmunoassay, we found that early weaning increased corticosterone concentration at day 16 and 17 in test subjects as compared with controls, whereas it was equivalent between groups at day 18. CBG binding capacity decreased during treatment, and it was significantly lower at day 18. At this age, GR levels and distribution in the gastric mucosa were also reduced as compared with suckling counterparts. To reduce corticosterone activity during early weaning and to explore cell proliferation responses, we administered RU486 to 15-d-old pups. We found that cytoplasmic GR reached a peak after 48 h, whereas nuclear levels remained constant, thereby confirming the inhibition of receptor function. Next, by checking gastric proliferative responses, we observed that RU486 induced higher DNA synthesis and mitotic indices in test subjects as compared with control groups. CONCLUSIONS: We demonstrated that early weaning changed corticosterone activity by increasing hormone levels, reducing CBG binding capacity, and decreasing GR distribution in the gastric epithelium. These modifications seem to be important to the reorganization of gastric growth after the abrupt interruption of suckling.


Asunto(s)
Proliferación Celular , Corticosterona/fisiología , Mucosa Gástrica/metabolismo , Animales , Femenino , Mucosa Gástrica/citología , Antagonistas de Hormonas/farmacología , Masculino , Mifepristona/farmacología , Ratas , Ratas Wistar , Receptores de Glucocorticoides/metabolismo , Transcortina/metabolismo , Destete
4.
Dig Dis Sci ; 51(6): 1063-9, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16865572

RESUMEN

Strongyloidiasis is an endemic tropical parasitosis caused by Strongyloides stercoralis that also affects immigrants in nontropical countries. The nematode colonizes the duodenum and upper jejunum, inducing mucosal alterations. Because integrity is essential for a functional barrier, we aimed to study apoptosis and proliferation in the small bowel epithelium infected with S. stercoralis. We evaluated 23 patients and 17 controls. Apoptotic cells were detected by TUNEL and M30 immunolabelling, whereas proliferation was scored by Ki67 immunostaining and mitotic counting. Infection increased apoptotic indices in duodenum and jejunum (P < 0.001). Conversely, it decreased cell proliferation in both segments (P < 0.001). Our results showed that intestinal strongyloidiasis promotes an imbalance between cell death and proliferation. This is the first evidence of disruption of the epithelial kinetics with S. stercoralis infection, though the mechanisms remain unclear. Furthermore, our results support the idea that strongyloidiasis disturbs the mucosal integrity and can compromise the intestinal barrier.


Asunto(s)
Duodeno/parasitología , Yeyuno/parasitología , Estrongiloidiasis/patología , Adulto , Animales , Apoptosis , Estudios de Casos y Controles , Proliferación Celular , Duodeno/citología , Epitelio/parasitología , Epitelio/patología , Femenino , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Yeyuno/citología , Masculino , Persona de Mediana Edad , Strongyloides stercoralis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA