Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virchows Arch ; 477(3): 385-392, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31993770

RESUMEN

The autonomic nervous system plays a role in a variety of liver regenerative and metabolic functions, including modulating bile secretion and cholangiocyte and hepatobiliary progenitors of the canals of Hering. However, the nature and location of nerves which link to the proximal biliary tree have remained uncertain. We investigate the anatomic relationship of nerves to the proximal biliary tree including the putative stem/progenitor cell niche of the canal of Hering. Using double immunostaining (fluorescence, histochemistry) to highlight markers of cholangiocytes (biliary-type keratins), nerves (S100, neurofilament protein, PGP9.5, tyrosine hydroxylase), and stellate cells (CRBP-1), we examined sections from normal adult livers from autopsy or surgical resections. There is extensive contact between nerves and interlobular bile ducts, bile ductules, and canals of Hering (CoH). In multiple serial sections from 4 normal livers, biliary-nerve contacts were seen in all of these structures and were more common in the interlobular bile ducts (78/137; 57%) than in the ductules and CoH (95/294; 33%) (p < 0.001). Contacts appear to consist of nerves in juxtaposition to the biliary basement membrane, though crossing through basement membrane to interface directly with cholangiocytes is also present. These nerves are positive for tyrosine hydroxylase and are, thus, predominately adrenergic. Electron microscopy confirms nerves closely approximating ductules. Nerve fiber-hepatic stellate cell juxtaposition is observed but without stellate cell approximation to cholangiocytes. We present novel findings of biliary innervation, perhaps mediated in part, by direct cholangiocyte-nerve interactions. The implications of these findings are protean for studies of neuromodulation of biliary physiology and hepatic stem/progenitor cells.


Asunto(s)
Sistema Biliar/inervación , Sistema Biliar/fisiología , Adulto , Conductos Biliares/inervación , Conductos Biliares/fisiología , Sistema Biliar/metabolismo , Vesícula Biliar/inervación , Vesícula Biliar/fisiología , Humanos , Inmunohistoquímica/métodos , Hígado/inervación , Hígado/fisiología , Células Madre/metabolismo , Células Madre/fisiología
2.
Hepatology ; 41(6): 1252-61, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15880565

RESUMEN

We examined the response of murine oval cells, that is, the putative liver progenitor cells, to acetaminophen. Female C57BL/6J mice were injected intraperitoneally with varying doses of N-acetyl-paraaminophen (APAP) (250, 500, 750, and 1,000 mg/kg of weight) and sacrificed at 3, 6, 9, 24, and 48 hours. In preliminary studies, we showed that anticytokeratin antibodies detected A6-positive cells with a sensitivity and specificity of greater than 99%. The oval cell reaction was quantified, on immunostaining for biliary-type cytokeratins, as both number and density of oval cells per portal tract, analyzed by size of portal tract. Acetaminophen injury was followed by periportal oval cell accumulation displaying a moderate degree of morphological homogeneity. Oval cell response was biphasic, not temporally correlating with the single wave of injury seen histologically. Increases in oval cells were largely confined to the smallest portal tracts, in keeping with their primary derivation from the canals of Hering, and increased in a dose-dependent fashion. The timing of the two peaks of the oval cell reaction also changed with increasing dose, the first becoming earlier and the second later. In conclusion, our studies indicate a marked oval cell activation during the height of hepatic injury. Oval cells appear to be resistant to acetaminophen injury. The close fidelity of mechanism and histology of acetaminophen injury between mouse and human livers makes it a useful model for investigating liver regeneration and the participation of stem/progenitor cells in that process.


Asunto(s)
Acetaminofén/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatopatías/patología , Hígado/patología , Células Madre/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Técnicas Inmunológicas/normas , Queratinas/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre/metabolismo , Células Madre/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...