Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 286(35): 30513-30525, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21719706

RESUMEN

FTY720 phosphate (FTY720P) is a high potency agonist for all the endothelial differentiation gene family sphingosine 1-phosphate (S1P) receptors except S1P receptor subtype 2 (S1P(2)). To map the distinguishing features of S1P(2) ligand recognition, we applied a computational modeling-guided mutagenesis strategy that was based on the high degree of sequence homology between S1P(1) and S1P(2). S1P(2) point mutants of the ligand-binding pocket were characterized. The head group-interacting residues Arg3.28, Glu3.29, and Lys7.34 were essential for activation. Mutation of residues Ala3.32, Leu3.36, Val5.41, Phe6.44, Trp6.48, Ser7.42, and Ser7.46, predicted to interact with the S1P hydrophobic tail, impaired activation by S1P. Replacing individual or multiple residues in the ligand-binding pocket of S1P(2) with S1P(1) sequence did not impart activation by FTY720P. Chimeric S1P(1)/S1P(2) receptors were generated and characterized for activation by S1P or FTY720P. The S1P(2) chimera with S1P(1) sequence from the N terminus to transmembrane domain 2 (TM2) was activated by FTY720P, and the S1P(2)(IC1-TM2)(S1P1) domain insertion chimera showed S1P(1)-like activation. Twelve residues in this domain, distributed in four motifs a-d, differ between S1P(1) and S1P(2). Insertion of (78)RPMYY in motif b alone or simultaneous swapping of five other residues in motifs c and d from S1P(1) into S1P(2) introduced FTY720P responsiveness. Molecular dynamics calculations indicate that FTY720P binding selectivity is a function of the entropic contribution to the binding free energy rather than enthalpic contributions and that preferred agonists retain substantial flexibility when bound. After exposure to FTY720P, the S1P(2)(IC1-TM2)(S1P1) receptor recycled to the plasma membrane, indicating that additional structural elements are required for the selective degradative trafficking of S1P(1).


Asunto(s)
Glicoles de Propileno/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Secuencias de Aminoácidos , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Clorhidrato de Fingolimod , Células HEK293 , Humanos , Inmunosupresores/farmacología , Ligandos , Lípidos/química , Mutagénesis , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/química , Esfingosina/farmacología
2.
Bioorg Med Chem ; 17(9): 3433-42, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19345587

RESUMEN

Autotaxin (ATX) catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to form the bioactive lipid lysophosphatidic acid (LPA). LPA stimulates cell proliferation, cell survival, and cell migration and is involved in obesity, rheumatoid arthritis, neuropathic pain, atherosclerosis and various cancers, suggesting that ATX inhibitors have broad therapeutic potential. Product feedback inhibition of ATX by LPA has stimulated structure-activity studies focused on LPA analogs. However, LPA displays mixed mode inhibition, indicating that it can bind to both the enzyme and the enzyme-substrate complex. This suggests that LPA may not interact solely with the catalytic site. In this report we have prepared LPC analogs to help map out substrate structure-activity relationships. The structural variances include length and unsaturation of the fatty tail, choline and polar linker presence, acyl versus ether linkage of the hydrocarbon chain, and methylene and nitrogen replacement of the choline oxygen. All LPC analogs were assayed in competition with the synthetic substrate, FS-3, to show the preference ATX has for each alteration. Choline presence and methylene replacement of the choline oxygen were detrimental to ATX recognition. These findings provide insights into the structure of the enzyme in the vicinity of the catalytic site as well as suggesting that ATX produces rate enhancement, at least in part, by substrate destabilization.


Asunto(s)
Lisofosfatidilcolinas/metabolismo , Complejos Multienzimáticos/metabolismo , Fosfodiesterasa I/metabolismo , Pirofosfatasas/metabolismo , Línea Celular Tumoral , Humanos , Hidrólisis , Lisofosfatidilcolinas/química , Lisofosfolípidos/metabolismo , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Fosfodiesterasa I/antagonistas & inhibidores , Fosfodiesterasa I/química , Hidrolasas Diéster Fosfóricas , Pirofosfatasas/antagonistas & inhibidores , Pirofosfatasas/química , Receptores del Ácido Lisofosfatídico/metabolismo , Relación Estructura-Actividad
3.
Bioorg Med Chem ; 16(11): 6207-17, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18467108

RESUMEN

In the present study, we utilized virtual screening to identify LPA(3) antagonists. We have developed a three-point structure-based pharmacophore model based on known LPA(3) antagonists. This model was used to mine the NCI database. Docking, pharmacophore development, and database mining produced new, non-lipid leads. Experimental testing of seven computationally selected pharmacophore hits produced one potentiator and three antagonists, one of which displays both LPA(3) selectivity and nanomolar potency. Similarity searching in the ChemBridge database using the most promising lead as the search target produced four additional LPA(3) antagonists and a potent dual LPA(1&2) antagonist.


Asunto(s)
Simulación por Computador , Lisofosfolípidos/antagonistas & inhibidores , Modelos Químicos , Modelos Moleculares , Animales , Células CHO , Calcio/química , Calcio/metabolismo , Señalización del Calcio/fisiología , Bovinos , Línea Celular Tumoral , Cricetinae , Cricetulus , Diglicéridos/química , Diglicéridos/farmacología , Isoxazoles/química , Isoxazoles/farmacología , Lisofosfolípidos/agonistas , Lisofosfolípidos/metabolismo , Propionatos/química , Propionatos/farmacología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Ratas , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/biosíntesis , Receptores del Ácido Lisofosfatídico/genética , Rodopsina/química , Homología Estructural de Proteína
4.
J Mol Graph Model ; 26(8): 1189-201, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18165127

RESUMEN

Computational modeling and its application in ligand screening and ligand receptor interaction studies play important roles in structure-based drug design. A series of sphingosine 1-phosphate (S1P) receptor ligands with varying potencies and receptor selectivities were docked into homology models of the S1P(1-5) receptors. These studies provided molecular insights into pharmacological trends both across the receptor family as well as at single receptors. This study identifies ligand recognition features that generalize across the S1P receptor family, features unique to the S1P(4) and S1P(5) receptors, and suggests significant structural differences of the S1P(2) receptor. Docking results reveal a previously unknown sulfur-aromatic interaction between the S1P(4) C5.44 sulfur atom and the phenyl ring of benzimidazole as well as pi-pi interaction between F3.33 of S1P(1,4,5) and aromatic ligands. The findings not only confirm the importance of a cation-pi interaction between W4.64 and the ammonium of S1P at S1P(4) but also predict the same interaction at S1P(5). S1P receptor models are validated for pharmacophore development including database mining and new ligand discovery and serve as tools for ligand optimization to improve potency and selectivity.


Asunto(s)
Modelos Moleculares , Receptores del Ácido Lisofosfatídico/química , Receptores de Lisoesfingolípidos/química , Secuencia de Aminoácidos , Sitios de Unión , Ligandos , Datos de Secuencia Molecular , Estructura Molecular , Unión Proteica , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
5.
J Biol Chem ; 282(4): 2374-85, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17114791

RESUMEN

Sphingosine 1-phosphate (S1P), a naturally occurring sphingolipid mediator and also a second messenger with growth factor-like actions in almost every cell type, is an endogenous ligand of five G protein-coupled receptors (GPCRs) in the endothelial differentiation gene family. The lack of GPCR crystal structures sets serious limitations to rational drug design and in silico searches for subtype-selective ligands. Here we report on the experimental validation of a computational model of the ligand binding pocket of the S1P1 GPCR surrounding the aliphatic portion of S1P. The extensive mutagenesis-based validation confirmed 18 residues lining the hydrophobic ligand binding pocket, which, combined with the previously validated three head group-interacting residues, now complete the mapping of the S1P ligand recognition site. We identified six mutants (L3.43G/L3.44G, L3.43E/L3.44E, L5.52A, F5.48G, V6.40L, and F6.44G) that maintained wild type [32P]S1P binding with abolished ligand-dependent activation by S1P. These data suggest a role for these amino acids in the conformational transition of S1P1 to its activated state. Three aromatic mutations (F5.48Y, F6.44G, and W6.48A) result in differential activation, by S1P or SEW2871, indicating that structural differences between the two agonists can partially compensate for differences in the amino acid side chain. The now validated ligand binding pocket provided us with a pharmacophore model, which was used for in silico screening of the NCI, National Institutes of Health, Developmental Therapeutics chemical library, leading to the identification of two novel nonlipid agonists of S1P1.


Asunto(s)
Modelos Moleculares , Receptores de Lisoesfingolípidos/química , Sitios de Unión , Biología Computacional , Humanos , Ligandos , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Estructura Molecular , Unión Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/metabolismo , Relación Estructura-Actividad
6.
Chem Biol ; 12(6): 703-15, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15975516

RESUMEN

The essential role of the sphingosine 1-phosphate (S1P) receptor S1P(1) in regulating lymphocyte trafficking was demonstrated with the S1P(1)-selective nanomolar agonist, SEW2871. Despite its lack of charged headgroup, the tetraaromatic compound SEW2871 binds and activates S1P(1) through a combination of hydrophobic and ion-dipole interactions. Both S1P and SEW2871 activated ERK, Akt, and Rac signaling pathways and induced S1P(1) internalization and recycling, unlike FTY720-phosphate, which induces receptor degradation. Agonism with receptor recycling is sufficient for alteration of lymphocyte trafficking by S1P and SEW2871. S1P(1) modeling and mutagenesis studies revealed that residues binding the S1P headgroup are required for kinase activation by both S1P and SEW2871. Therefore, SEW2871 recapitulates the action of S1P in all the signaling pathways examined and overlaps in interactions with key headgroup binding receptor residues, presumably replacing salt-bridge interactions with ion-dipole interactions.


Asunto(s)
Evaluación Preclínica de Medicamentos , Sondas Moleculares/metabolismo , Oxadiazoles/farmacología , Receptores de Lisoesfingolípidos/agonistas , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal/efectos de los fármacos , Tiofenos/farmacología , Animales , Sitios de Unión , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cricetinae , Activación Enzimática/efectos de los fármacos , Humanos , Ligandos , Lisofosfolípidos/química , Lisofosfolípidos/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Moleculares , Sondas Moleculares/química , Sondas Moleculares/farmacología , Mutación/genética , Oxadiazoles/química , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Receptores de Lisoesfingolípidos/química , Receptores de Lisoesfingolípidos/genética , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacología , Tiofenos/química , Proteínas de Unión al GTP rac/metabolismo
7.
Biochem J ; 389(Pt 1): 187-95, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15733055

RESUMEN

Synergistic computational and experimental studies provided previously unforeseen details concerning the structural basis of S1P (sphingosine 1-phosphate) recognition by the S1P4 G-protein-coupled receptor. Similarly to reports on the S1P1 receptor, cationic and anionic residues in the third transmembrane domain (R3.28 and E3.29 at positions 124 and 125) form ion pairs with the phosphate and ammonium of S1P, and alanine mutations at these positions abolished specific S1P binding, S1P-induced receptor activation and cell migration. Unlike findings on the S1P1 receptor, no cationic residue in the seventh transmembrane domain interacts with the phosphate. Additionally, two previously undiscovered interactions with the S1P polar headgroup have been identified. Trp186 at position 4.64 in the fourth transmembrane domain interacts by a cation-pi interaction with the ammonium group of S1P. Lys204 at position 5.38 forms an ion pair with the S1P. The S1P4 and S1P1 receptors show differences in binding-pocket shape and electrostatic distributions that correlate with the published structure-activity relationships. In particular, the binding pocket of mS1P4 (mouse S1P4) has recognition sites for the anionic phosphate and cationic ammonium groups that are equidistant from the end of the non-polar tail. In contrast, the binding pocket of hS1P1 (human S1P4) places the ammonium recognition site 2 A (1 A=0.1 nm) closer to the end of the non-polar tail than the phosphate recognition site.


Asunto(s)
Células Endoteliales/metabolismo , Lisofosfolípidos/metabolismo , Familia de Multigenes , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular , Cricetinae , Células Endoteliales/citología , Humanos , Ligandos , Lisofosfolípidos/química , Ratones , Estructura Molecular , Mutación , Receptores de Lisoesfingolípidos/química , Receptores de Lisoesfingolípidos/genética , Homología de Secuencia de Aminoácido , Esfingosina/química , Esfingosina/metabolismo , Especificidad por Sustrato
8.
BMC Biochem ; 5: 12, 2004 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-15298705

RESUMEN

BACKGROUND: Sphingosine-1-phosphate and lysophosphatidic acid (LPA) are ligands for two related families of G protein-coupled receptors, the S1P and LPA receptors, respectively. The lysophospholipid ligands of these receptors are structurally similar, however recognition of these lipids by these receptors is highly selective. A single residue present within the third transmembrane domain (TM) of S1P receptors is thought to determine ligand selectivity; replacement of the naturally occurring glutamic acid with glutamine (present at this position in the LPA receptors) has previously been shown to be sufficient to change the specificity of S1P1 from S1P to 18:1 LPA. RESULTS: We tested whether mutation of this "ligand selectivity" residue to glutamine could confer LPA-responsiveness to the related S1P receptor, S1P4. This mutation severely affected the response of S1P4 to S1P in a [35S]GTP gamma S binding assay, and imparted sensitivity to LPA species in the order 14:0 LPA > 16:0 LPA > 18:1 LPA. These results indicate a length restriction for activation of this receptor and demonstrate the utility of using LPA-responsive S1P receptor mutants to probe binding pocket length using readily available LPA species. Computational modelling of the interactions between these ligands and both wild type and mutant S1P4 receptors showed excellent agreement with experimental data, therefore confirming the fundamental role of this residue in ligand recognition by S1P receptors. CONCLUSIONS: Glutamic acid in the third transmembrane domain of the S1P receptors is a general selectivity switch regulating response to S1P over the closely related phospholipids, LPA. Mutation of this residue to glutamine confers LPA responsiveness with preference for short-chain species. The preference for short-chain LPA species indicates a length restriction different from the closely related S1P1 receptor.


Asunto(s)
Lisofosfolípidos/metabolismo , Receptores de Lisoesfingolípidos/química , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Sustitución de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , Ácido Glutámico/química , Humanos , Ligandos , Lisofosfolípidos/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Toxina del Pertussis/farmacología , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA