Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22760, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123836

RESUMEN

Patients with persistent pain have sometimes history of physical abuse or neglect during infancy. However, the pathogenic mechanisms underlying orofacial pain hypersensitivity associated with early-life stress remain unclear. The present study focused on oxidative stress and investigated its role in pain hypersensitivity in adulthood following early-life stress. To establish an early-life stress model, neonatal pups were separated with their mother in isolated cages for 2 weeks. The mechanical head-withdrawal threshold (MHWT) in the whisker pad skin of rats received maternal separation (MS) was lower than that of non-MS rats at postnatal week 7. In MS rats, the expression of 8-hydroxy-deoxyguanosine, a marker of DNA oxidative damage, was enhanced, and plasma antioxidant capacity, but not mitochondrial complex I activity, decreased compared with that in non-MS rats. Reactive oxygen species (ROS) inactivation and ROS-sensitive transient receptor potential ankyrin 1 (TRPA1) antagonism in the whisker pad skin at week 7 suppressed the decrease of MHWT. Corticosterone levels on day 14 increased in MS rats. Corticosterone receptor antagonism during MS periods suppressed the reduction in antioxidant capacity and MHWT. The findings suggest that early-life stress potentially induces orofacial mechanical pain hypersensitivity via peripheral nociceptor TRPA1 hyperactivation induced by oxidative stress in the orofacial region.


Asunto(s)
Antioxidantes , Hiperalgesia , Humanos , Ratas , Animales , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/efectos adversos , Privación Materna , Dolor Facial/patología , Estrés Oxidativo
2.
J Neuroinflammation ; 20(1): 258, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946211

RESUMEN

BACKGROUND: Although peripheral nerves have an intrinsic self-repair capacity following damage, functional recovery is limited in patients. It is a well-established fact that macrophages accumulate at the site of injury. Numerous studies indicate that the phenotypic shift from M1 macrophage to M2 macrophage plays a crucial role in the process of axon regeneration. This polarity change is observed exclusively in peripheral macrophages but not in microglia and CNS macrophages. However, the molecular basis of axonal regeneration by M2 macrophage is not yet fully understood. Herein, we aimed to identify the M2 macrophage-derived axon regeneration factor. METHODS: We established a peripheral nerve injury model by transection of the inferior alveolar nerve (IANX) in Sprague-Dawley rats. Transcriptome analysis was performed on the injured nerve. Recovery from sensory deficits in the mandibular region and histological reconnection of IAN after IANX were assessed in rats with macrophage depletion by clodronate. We investigated the effects of adoptive transfer of M2 macrophages or M2-derived cathepsin S (CTSS) on the sensory deficit. CTSS initiating signaling was explored by western blot analysis in IANX rats and immunohistochemistry in co-culture of primary fibroblasts and Schwann cells (SCs). RESULTS: Transcriptome analysis revealed that CTSS, a macrophage-selective lysosomal protease, was upregulated in the IAN after its injury. Spontaneous but partial recovery from a sensory deficit in the mandibular region after IANX was abrogated by macrophage ablation at the injured site. In addition, a robust induction of c-Jun, a marker of the repair-supportive phenotype of SCs, after IANX was abolished by macrophage ablation. As in transcriptome analysis, CTSS was upregulated at the injured IAN than in the intact IAN. Endogenous recovery from hypoesthesia was facilitated by supplementation of CTSS but delayed by pharmacological inhibition or genetic silencing of CTSS at the injured site. Adoptive transfer of M2-polarized macrophages at this site facilitated sensory recovery dependent on CTSS in macrophages. Post-IANX, CTSS caused the cleavage of Ephrin-B2 in fibroblasts, which, in turn, bound EphB2 in SCs. CTSS-induced Ephrin-B2 cleavage was also observed in human sensory nerves. Inhibition of CTSS-induced Ephrin-B2 signaling suppressed c-Jun induction in SCs and sensory recovery. CONCLUSIONS: These results suggest that M2 macrophage-derived CTSS contributes to axon regeneration by activating SCs via Ephrin-B2 shedding from fibroblasts.


Asunto(s)
Axones , Traumatismos de los Nervios Periféricos , Animales , Humanos , Ratas , Axones/patología , Catepsinas/metabolismo , Catepsinas/farmacología , Efrina-B2/metabolismo , Efrina-B2/farmacología , Fibroblastos/metabolismo , Macrófagos/metabolismo , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Nervios Periféricos/patología , Ratas Sprague-Dawley , Células de Schwann/metabolismo
3.
J Oral Biosci ; 65(4): 356-364, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37838226

RESUMEN

OBJECTIVE: This study aimed to clarify the interactions between the tongue and primary afferent fibers in tongue cancer pain. METHODS: A pharmacological analysis was conducted to evaluate mechanical hypersensitivity of the tongues of rats with squamous cell carcinoma (SCC). Changes in trigeminal ganglion (TG) neurons projecting to the tongue were analyzed using immunohistochemistry and western blotting. RESULTS: SCC inoculation of the tongue caused persistent mechanical sensitization and tumor formation. Trypsin expression was significantly upregulated in cancer lesions. Continuous trypsin inhibition or protease-activated receptor 2 (PAR2) antagonism in the tongue significantly inhibited SCC-induced mechanical sensitization. No changes were observed in PAR2 and transient receptor potential vanilloid 4 (TRPV4) levels in the TG or the number of PAR2-and TRPV4-expressing TG neurons after SCC inoculation. In contrast, the relative amount of phosphorylated TRPV4 in the TG was significantly increased after SCC inoculation and abrogated by PAR2 antagonism in the tongue. TRPV4 antagonism in the tongue significantly ameliorated the mechanical sensitization caused by SCC inoculation. CONCLUSIONS: Our findings indicate that tumor-derived trypsin sensitizes primary afferent fibers by PAR2 stimulation and subsequent TRPV4 phosphorylation, resulting in severe tongue pain.


Asunto(s)
Dolor en Cáncer , Carcinoma de Células Escamosas , Glosalgia , Neoplasias de la Lengua , Animales , Ratas , Dolor en Cáncer/metabolismo , Glosalgia/metabolismo , Dolor/metabolismo , Fosforilación , Receptor PAR-2/metabolismo , Lengua/metabolismo , Neoplasias de la Lengua/metabolismo , Nervio Trigémino/metabolismo , Canales Catiónicos TRPV/metabolismo , Tripsina/metabolismo , Tripsina/farmacología
4.
Brain Behav Immun Health ; 30: 100622, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37101903

RESUMEN

The dysfunction of descending noradrenergic (NAergic) modulation in second-order neurons has long been observed in neuropathic pain. In clinical practice, antidepressants that increase noradrenaline levels in the synaptic cleft are used as first-line agents, although adequate analgesia has not been occasionally achieved. One of the hallmarks of neuropathic pain in the orofacial regions is microglial abnormalities in the trigeminal spinal subnucleus caudalis (Vc). However, until now, the direct interaction between descending NAergic system and Vc microglia in orofacial neuropathic pain has not been explored. We found that reactive microglia ingested the dopamine-ß-hydroxylase (DßH)-positive fraction, NAergic fibers, in the Vc after infraorbital nerve injury (IONI). Major histocompatibility complex class I (MHC-I) was upregulated in Vc microglia after IONI. Interferon-γ (IFNγ) was de novo induced in trigeminal ganglion (TG) neurons following IONI, especially in C-fiber neurons, which conveyed to the central terminal of TG neurons. Gene silencing of IFNγ in the TG reduced MHC-I expression in the Vc after IONI. Intracisternal administration of exosomes from IFNγ-stimulated microglia elicited mechanical allodynia and a decrease in DßH in the Vc, which did not occur when exosomal MHC-I was knocked down. Similarly, in vivo MHC-I knockdown in Vc microglia attenuated the development of mechanical allodynia and a decrease in DßH in the Vc after IONI. These results show that microglia-derived MHC-I causes a decrease in NAergic fibers, culminating in orofacial neuropathic pain.

5.
Neuroscience ; 468: 43-52, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34102263

RESUMEN

Sensory disturbance in the orofacial region owing to trigeminal nerve injury is caused by dental treatment or accident. Commercially available therapeutics are ineffective for the treatment of sensory disturbance. Additionally, the therapeutic effects of rapamycin, an allosteric inhibitor of mammalian target of rapamycin (mTOR), which negatively regulates autophagy, on the sensory disturbance are not fully investigated. Thus, we investigated the therapeutic effects of rapamycin on the sensory disturbance in the mandibular region caused by inferior alveolar nerve (IAN) transection (IANX) in rats. The expression levels of the phosphorylated p70S6K, a downstream molecule of mTOR, in the proximal and distal stumps of the transected IAN were significantly reduced by rapamycin administration to the injured site. Conversely, the increments of both Beclin 1 and microtubule-associated protein-1 light chain 3-II protein levels in the proximal and distal stumps of the transected IAN was induced by rapamycin administration. Immunohistochemical analyses revealed that Beclin 1 was located in Schwann cells in the proximal stump of the IAN. Accumulation of myelin protein zero and myelin basic protein in the proximal and distal stumps of the IAN was significantly reduced by rapamycin administration. Rapamycin administration facilitated axon regeneration after IANX and increased the number of brain-derived neurotrophic factor positive neurons in the trigeminal ganglion. Thus, recovery from sensory disturbance in the lower lip caused by IANX was markedly facilitated by rapamycin. These findings suggest that rapamycin administration is a promising treatment for the sensory disturbance caused by IANX.


Asunto(s)
Sirolimus , Traumatismos del Nervio Trigémino , Animales , Autofagia , Axones , Nervio Mandibular , Regeneración Nerviosa , Ratas , Ratas Sprague-Dawley , Células de Schwann , Sirolimus/farmacología , Traumatismos del Nervio Trigémino/tratamiento farmacológico
6.
Mol Cancer Ther ; 7(7): 2142-51, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18645024

RESUMEN

Prostate-specific membrane antigen (PSMA) is a transmembrane protein highly expressed in advanced and metastatic prostate cancers. The pathologic consequence of elevated PSMA expression in not known. Here, we report that PSMA is localized to a membrane compartment in the vicinity of mitotic spindle poles and associates with the anaphase-promoting complex (APC). PSMA-expressing cells prematurely degrade cyclin B and exit mitosis due to increased APC activity and incomplete inactivation of APC by the spindle assembly checkpoint. Further, expression of PSMA in a karyotypically stable cell line induces aneuploidy. Thus, these findings provide the first evidence that PSMA has a causal role in the induction of aneuploidy and might play an etiologic role in the progression of prostate cancer.


Asunto(s)
Inestabilidad Cromosómica , Antígeno Prostático Específico/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Centrosoma/efectos de los fármacos , Centrosoma/ultraestructura , Inestabilidad Cromosómica/efectos de los fármacos , Ciclina B/metabolismo , Ciclina B1 , Perros , Humanos , Nocodazol/farmacología , Antígeno Prostático Específico/ultraestructura , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Huso Acromático/metabolismo
7.
Mol Biol Cell ; 14(12): 4835-45, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14528023

RESUMEN

Prostate-specific membrane antigen (PSMA) is a transmembrane protein expressed at high levels in prostate cancer and in tumor-associated neovasculature. In this study, we report that PSMA is internalized via a clathrin-dependent endocytic mechanism and that internalization of PSMA is mediated by the five N-terminal amino acids (MWNLL) present in its cytoplasmic tail. Deletion of the cytoplasmic tail abolished PSMA internalization. Mutagenesis of N-terminal amino acid residues at position 2, 3, or 4 to alanine did not affect internalization of PSMA, whereas mutation of amino acid residues 1 or 5 to alanine strongly inhibited internalization. Using a chimeric protein composed of Tac antigen, the alpha-chain of interleukin 2-receptor, fused to the first five amino acids of PSMA (Tac-MWNLL), we found that this sequence is sufficient for PSMA internalization. In addition, inclusion of additional alanines into the MWNLL sequence either in the Tac chimera or the full-length PSMA strongly inhibited internalization. From these results, we suggest that a novel MXXXL motif in the cytoplasmic tail mediates PSMA internalization. We also show that dominant negative micro2 of the adaptor protein (AP)-2 complex strongly inhibits the internalization of PSMA, indicating that AP-2 is involved in the internalization of PSMA mediated by the MXXXL motif.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Antígenos de Superficie/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Glutamato Carboxipeptidasa II/metabolismo , Secuencias de Aminoácidos/fisiología , Animales , Antígenos de Superficie/química , Antígenos de Superficie/genética , Células COS , Chlorocebus aethiops , Glutamato Carboxipeptidasa II/química , Glutamato Carboxipeptidasa II/genética , Células HeLa , Humanos , Microscopía Confocal , Microscopía Fluorescente , Modelos Moleculares , Mutación , Plásmidos/genética , Unión Proteica , Receptores de Interleucina-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...