Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hepatol Commun ; 8(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285890

RESUMEN

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by misfolding and accumulation of mutant alpha-1 antitrypsin (ZAAT) in the endoplasmic reticulum of hepatocytes. Hepatic ZAAT aggregates acquire a toxic gain-of-function that impacts the endoplasmic reticulum which is theorized to cause liver disease in individuals with AATD who present asymptomatic until late-stage cirrhosis. Currently, there is no treatment for AATD-mediated liver disease except liver transplantation. In our study of mitochondrial RNA, we identified that Sirtuin3 (SIRT3) plays a role in the hepatic phenotype of AATD. METHODS: Utilizing RNA and protein analysis in an in vitro AATD model, we investigated the role of SIRT3 in the pathophysiology of AATD-mediated liver disease while also characterizing our novel, transgenic AATD mouse model. RESULTS: We show lower expression of SIRT3 in ZAAT-expressing hepatocytes. In contrast, the overexpression of SIRT3 increases hepatic ZAAT degradation. ZAAT degradation mediated by SIRT3 appeared independent of proteasomal degradation and regular autophagy pathways. We observed that ZAAT-expressing hepatocytes have aberrant accumulation of lipid droplets, with ZAAT polymers localizing on the lipid droplet surface in a direct interaction with Perilipin2, which coats intracellular lipid droplets. SIRT3 overexpression also induced the degradation of lipid droplets in ZAAT-expressing hepatocytes. We observed that SIRT3 overexpression induces lipophagy by enhancing the interaction of Perilipin2 with HSC70. ZAAT polymers then degrade as a consequence of the mobilization of lipids through this process. CONCLUSIONS: In this context, SIRT3 activation may eliminate the hepatic toxic gain-of-function associated with the polymerization of ZAAT, providing a rationale for a potential novel therapeutic approach to the treatment of AATD-mediated liver disease.


Asunto(s)
Sirtuina 3 , Deficiencia de alfa 1-Antitripsina , alfa 1-Antitripsina , Animales , Ratones , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/metabolismo , Autofagia/genética , Ratones Transgénicos , Polímeros , Sirtuina 3/genética , Humanos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
2.
Respir Res ; 24(1): 309, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082274

RESUMEN

Alpha-1-antitrypsin deficiency (AATD) is a genetic disorder associated with a 5-tenfold decrease in lung levels of alpha-1-antitrypsin (AAT) and an increased risk for obstructive lung disease. α-defensins are cationic broad-spectrum cytotoxic and pro-inflammatory peptides found in the azurophilic granules of neutrophils. The concentration of α-defensins is less than 30 nM in the bronchoalveolar lavage fluid of healthy controls but is up to 6 µM in AATD individuals with significant lung function impairment. Alveolar macrophages are generally classified into pro-inflammatory (M1) or anti-inflammatory (M2) subsets that play distinct roles in the initiation and resolution of inflammation. Therefore, monocyte-macrophage differentiation should be tightly controlled to maintain lung integrity. In this study, we determined the effect of α-defensins on monocyte-macrophage differentiation and identified the molecular mechanism of this effect. The results of this study demonstrate that 2.5 µM of α-defensins inhibit the phosphorylation of ERK1/2 and STAT3 and suppress the expression of M2 macrophage markers, CD163 and CD206. In addition, a scratch assay shows that the high concentration of α-defensins inhibits cell movement by ~ 50%, and the phagocytosis assay using flow cytometry shows that α-defensins significantly reduce the bacterial phagocytosis rate of monocyte-derived macrophages (MDMs). To examine whether exogenous AAT is able to alleviate the inhibitory effect of α-defensins on macrophage function, we incubated MDMs with AAT prior to α-defensin treatment and demonstrate that AAT improves the migratory ability and phagocytic ability of MDMs compared with MDMs incubated only with α-defensins. Taken together, this study suggests that a high concentration of α-defensins inhibits the activation of ERK/STAT3 signaling, negatively regulates the expression of M2 macrophage markers, and impairs innate immune function of macrophages.


Asunto(s)
Deficiencia de alfa 1-Antitripsina , alfa-Defensinas , Humanos , Monocitos/metabolismo , alfa-Defensinas/metabolismo , Macrófagos/metabolismo , Deficiencia de alfa 1-Antitripsina/metabolismo , Macrófagos Alveolares/metabolismo , Factor de Transcripción STAT3/metabolismo
4.
Chronic Obstr Pulm Dis ; 10(1): 7-21, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36367950

RESUMEN

The SERPINA1 gene encodes the serine protease inhibitor alpha-1 antitrypsin (AAT) and is located on chromosome 14q31-32.3 in a cluster of homologous genes likely formed by exon duplication. AAT has a variety of anti-inflammatory properties. Its clinical relevance is best illustrated by the genetic disease alpha-1 antitrypsin deficiency (AATD) which is associated with an increased risk for chronic obstructive pulmonary disease (COPD) and cirrhosis. While 2 single nucleotide polymorphisms (SNPs) , S and Z, are responsible for more than 95% of all individuals with AATD, there are a number of rare variants associated with deficiency and dysfunction, as well as those associated with normal levels and function. Our laboratory has identified a number of novel AAT alleles that we report in this manuscript. We screened more than 500,000 individuals for AATD alleles through our testing program over the past 20 years. The characterization of these alleles was accomplished by DNA sequencing, measurement of AAT plasma levels and isoelectric focusing at pH 4-5. We report 22 novel AAT alleles discovered through our screening programs, such as Zlittle rock and QOchillicothe, and review the current literature of known AAT genetic variants.

5.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G594-G608, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256438

RESUMEN

Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by a hepatic accumulation of mutant alpha-1 antitrypsin (ZAAT). Individuals with AATD are prone to develop a chronic liver disease that remains undiagnosed until late stage of the disease. Here, we sought to characterize the liver pathophysiology of a human transgenic mouse model for AATD with a manifestation of liver disease compared with normal transgenic mice model. Male and female transgenic mice for normal (Pi*M) and mutant variant (Pi*Z) human alpha-1 antitrypsin at 3 and 6 mo of age were subjected to this study. The progression of hepatic ZAAT accumulation, hepatocyte injury, steatosis, liver inflammation, and fibrotic features were monitored by performing an in vivo study. We have also performed a Next-Gene transcriptomic analysis of the transgenic mice liver tissue 16 h after lipopolysaccharide (LPS) administration to delineate liver inflammatory response in Pi*Z mice as compared with Pi*M. Our results show hepatic ZAAT accumulation, followed by hepatocyte ballooning and liver steatosis developed at 3 mo in Pi*Z mice compared with the mice carrying normal variant of human alpha-1 antitrypsin. We observed higher levels of hepatic immune cell infiltrations in both 3- and 6-mo-old Pi*Z mice compared with Pi*M as an indication of liver inflammation. Liver fibrosis was observed as accumulation of collagen in 6-mo-old Pi*Z liver tissues compared with Pi*M control mice. Furthermore, the transcriptomic analysis revealed a dysregulated liver immune response to LPS in Pi*Z mice compared with Pi*M. Of particular interest for translational work, this study aims to establish a mouse model of AATD with a strong manifestation of liver disease that will be a valuable in vivo tool to study the pathophysiology of AATD-mediated liver disease. Our data suggest that the human transgenic mouse model of AATD could provide a suitable model for the evaluation of therapeutic approaches and preventive reagents against AATD-mediated liver disease.NEW & NOTEWORTHY We have characterized a mouse model of human alpha-1 antitrypsin deficiency with a strong manifestation of liver disease that can be used as an in vivo tool to test preventive and therapeutic reagents. Our data explores the altered immunophenotype of alpha-1 antitrypsin-deficient liver macrophages and suggests a relationship between acute inflammation, immune response, and fibrosis.


Asunto(s)
Hígado Graso , Deficiencia de alfa 1-Antitripsina , Masculino , Femenino , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Lipopolisacáridos , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , Ratones Transgénicos , Modelos Animales de Enfermedad , Inflamación
6.
Respir Res ; 23(1): 232, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068572

RESUMEN

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder most commonly secondary to a single mutation in the SERPINA1 gene (PI*Z) that causes misfolding and accumulation of alpha-1 antitrypsin (AAT) in hepatocytes and mononuclear phagocytes which reduces plasma AAT and creates a toxic gain of function. This toxic gain of function promotes a pro-inflammatory phenotype in macrophages that contributes to lung inflammation and early-onset COPD, especially in individuals who smoke cigarettes. The aim of this study is to determine the role of cigarette exposed AATD macrophages and bronchial epithelial cells in AATD-mediated lung inflammation. METHODS: Peripheral blood mononuclear cells from AATD and healthy individuals were differentiated into alveolar-like macrophages and exposed to air or cigarette smoke while in culture. Macrophage endoplasmic reticulum stress was quantified and secreted cytokines were measured using qPCR and cytokine ELISAs. To determine whether there is "cross talk" between epithelial cells and macrophages, macrophages were exposed to extracellular vesicles released by airway epithelial cells exposed to cigarette smoke and their inflammatory response was determined. RESULTS: AATD macrophages spontaneously produce several-fold more pro-inflammatory cytokines as compared to normal macrophages. AATD macrophages have an enhanced inflammatory response when exposed to cigarette smoke-induced extracellular vesicles (EVs) released from airway epithelial cells. Cigarette smoke-induced EVs induce expression of GM-CSF and IL-8 in AATD macrophages but have no effect on normal macrophages. Release of AAT polymers, potent neutrophil chemo attractants, were also increased from AATD macrophages after exposure to cigarette smoke-induced EVs. CONCLUSIONS: The expression of mutated AAT confers an inflammatory phenotype in AATD macrophages which disposes them to an exaggerated inflammatory response to cigarette smoke-induced EVs, and thus could contribute to progressive lung inflammation and damage in AATD individuals.


Asunto(s)
Fumar Cigarrillos , Vesículas Extracelulares , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Deficiencia de alfa 1-Antitripsina , Fumar Cigarrillos/efectos adversos , Citocinas/metabolismo , Células Epiteliales/metabolismo , Vesículas Extracelulares/metabolismo , Leucocitos Mononucleares/metabolismo , Activación de Macrófagos , Neumonía/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Nicotiana , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiencia de alfa 1-Antitripsina/genética
7.
PLoS One ; 17(9): e0274427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36084115

RESUMEN

BACKGROUND: Severe acute respiratory syndrome caused by a novel coronavirus 2 (SARS-CoV-2) has infected more than 18 million people worldwide. The activation of endothelial cells is a hallmark of signs of SARS-CoV-2 infection that includes altered integrity of vessel barrier and endothelial inflammation. OBJECTIVES: Pulmonary endothelial activation is suggested to be related to the profound neutrophil elastase (NE) activity, which is necessary for sterilization of phagocytosed bacterial pathogens. However, unopposed activity of NE increases alveolocapillary permeability and extracellular matrix degradation. The uncontrolled protease activity of NE during the inflammatory phase of lung diseases might be due to the resistance of exosome associated NE to inhibition by alpha-1 antitrypsin. METHOD: 31 subjects with a diagnosis of SARS-CoV2 infection were recruited in the disease group and samples from 30 voluntaries matched for age and sex were also collected for control. RESULTS: We measured the plasma levels of exosome-associated NE in SARS-CoV-2 patients which, were positively correlated with sign of endothelial damage in those patients as determined by plasma levels of LDH. Notably, we also found strong correlation with plasma levels of alpha-1 antitrypsin and exosome-associated NE in SARS-CoV-2 patients. Using macrovascular endothelial cells, we also observed that purified NE activity is inhibited by purified alpha-1 antitrypsin while, NE associated with exosomes are resistant to inhibition and show less sensitivity to alpha-1 antitrypsin inhibitory activity, in vitro. CONCLUSIONS: Our results point out the role of exosome-associated NE in exacerbation of endothelial injury in SARS-CoV-2 infection. We have demonstrated that exosome-associated NE could be served as a new potential therapeutic target of severe systemic manifestations of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Exosomas , Deficiencia de alfa 1-Antitripsina , Células Endoteliales/metabolismo , Exosomas/metabolismo , Humanos , Elastasa de Leucocito/metabolismo , ARN Viral , SARS-CoV-2 , alfa 1-Antitripsina/metabolismo
9.
Hepatol Commun ; 6(9): 2354-2367, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35621045

RESUMEN

Alpha-1 antitrypsin (AAT) deficiency (AATD) is an inherited disease caused by mutations in the serpin family A member 1 (SERPINA1, also known as AAT) gene. The most common variant, PI*Z (Glu342Lys), causes accumulation of aberrantly folded AAT in the endoplasmic reticulum (ER) of hepatocytes that is associated with a toxic gain of function, hepatocellular injury, liver fibrosis, and hepatocellular carcinoma. The unfolded protein response (UPR) is a cellular response to improperly folded proteins meant to alleviate ER stress. It has been unclear whether PI*Z AAT elicits liver cell UPR, due in part to limitations of current cellular and animal models. This study investigates whether UPR is activated in a novel human PI*Z AAT cell line and a new PI*Z human AAT (hAAT) mouse model. A PI*Z AAT hepatocyte cell line (Huh7.5Z) was established using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing of the normal ATT (PI*MM) gene in the Huh7.5 cell line. Additionally, novel full-length genomic DNA PI*Z hAAT and PI*M hAAT transgenic mouse models were established. Using these new models, UPR in Huh7.5Z cells and PI*Z mice were comprehensively determined. Robust activation of UPR was observed in Huh7.5Z cells compared to Huh7.5 cells. Activated caspase cascade and apoptosis markers, increased chaperones, and autophagy markers were also detected in Z hepatocytes. Selective attenuation of UPR signaling branches was observed in PI*Z hAAT mice in which the protein kinase R-like ER kinase and inositol-requiring enzyme1α branches were suppressed while the activating transcription factor 6α branch remained active. This study provides direct evidence that PI*Z AAT triggers canonical UPR and that hepatocytes survive pro-apoptotic UPR by selective suppression of UPR branches. Our data improve understanding of underlying pathological molecular mechanisms of PI*Z AATD liver disease.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Deficiencia de alfa 1-Antitripsina , Animales , Carcinoma Hepatocelular/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Respuesta de Proteína Desplegada/genética , Deficiencia de alfa 1-Antitripsina/genética
10.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34948056

RESUMEN

Alpha-1 antitrypsin deficiency (AATD) is caused by a single mutation in the SERPINA1 gene, which culminates in the accumulation of misfolded alpha-1 antitrypsin (ZAAT) within the endoplasmic reticulum (ER) of hepatocytes. AATD is associated with liver disease resulting from hepatocyte injury due to ZAAT-mediated toxic gain-of-function and ER stress. There is evidence of mitochondrial damage in AATD-mediated liver disease; however, the mechanism by which hepatocyte retention of aggregated ZAAT leads to mitochondrial injury is unknown. Previous studies have shown that ER stress is associated with both high concentrations of fatty acids and mitochondrial dysfunction in hepatocytes. Using a human AAT transgenic mouse model and hepatocyte cell lines, we show abnormal mitochondrial morphology and function, and dysregulated lipid metabolism, which are associated with hepatic expression and accumulation of ZAAT. We also describe a novel mechanism of ZAAT-mediated mitochondrial dysfunction. We provide evidence that misfolded ZAAT translocates to the mitochondria for degradation. Furthermore, inhibition of ZAAT expression restores the mitochondrial function in ZAAT-expressing hepatocytes. Altogether, our results show that ZAAT aggregation in hepatocytes leads to mitochondrial dysfunction. Our findings suggest a plausible model for AATD liver injury and the possibility of mechanism-based therapeutic interventions for AATD liver disease.


Asunto(s)
Hepatocitos/citología , Deficiencia de alfa 1-Antitripsina/patología , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Mutación con Ganancia de Función , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Transgénicos , Transporte de Proteínas , Proteolisis , Análisis de Secuencia de ARN , alfa 1-Antitripsina/química , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/metabolismo
11.
Front Immunol ; 11: 574410, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329539

RESUMEN

Alpha 1 antitrypsin deficiency (AATD) is an autosomal co-dominant disorder characterized by a low level of circulating AAT, which significantly reduces protection for the lower airways against proteolytic burden caused by neutrophils. Neutrophils, which are terminally differentiated innate immune cells and play a critical role to clear pathogens, accumulate excessively in the lung of AATD individuals. The neutrophil burden in AATD individuals increases the risk for early-onset destructive lung diseases by producing neutrophil products such as reactive oxygen radicals and various proteases. The level of AAT in AATD individuals is not sufficient to inhibit the activity of neutrophil chemotactic factors such as CXCL-8 and LTB4, which could lead to alveolar neutrophil accumulation in AATD individuals. However, as neutrophils have a short lifespan, and apoptotic neutrophils are rapidly cleared by alveolar macrophages that outnumber the apoptotic neutrophils in the pulmonary alveolus, the increased chemotaxis activity does not fully explain the persistent neutrophil accumulation and the resulting chronic inflammation in AATD individuals. Here, we propose that the ability of alveolar macrophages to clear apoptotic neutrophils is impaired in AATD individuals and it could be the main driver to cause neutrophil accumulation in their lung. This study demonstrates that Z-AAT variant significantly increases the expression of pro-inflammatory cytokines including CXCL-8, CXCL1, LTB4, and TNFα in LPS-treated macrophages. These cytokines play a central role in neutrophil recruitment to the lung and in clearance of apoptotic neutrophils by macrophages. Our result shows that LPS treatment significantly reduces the efferocytosis ability of macrophages with the Z-AAT allele by inducing TNFα expression. We incubated monocyte-derived macrophages (MDMs) with apoptotic neutrophils and found that after 3 h of co-incubation, the expression level of CXCL-8 is reduced in M-MDMs but increased in Z-MDMs. This result shows that the expression of inflammatory cytokines could be increased by impaired efferocytosis. It indicates that the efferocytosis ability of macrophages plays an important role in regulating cytokine expression and resolving inflammation. Findings from this study would help us better understand the multifaceted effect of AAT on regulating neutrophil balance in the lung and the underlying mechanisms.


Asunto(s)
Apoptosis/inmunología , Macrófagos/inmunología , Neutrófilos/inmunología , Fagocitosis/inmunología , Deficiencia de alfa 1-Antitripsina/inmunología , Quimiotaxis de Leucocito , Citocinas/metabolismo , Genotipo , Humanos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Neutrófilos/metabolismo , Fagocitosis/efectos de los fármacos , Fagocitosis/genética , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/inmunología , Deficiencia de alfa 1-Antitripsina/genética
12.
Sci Rep ; 10(1): 15874, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32981934

RESUMEN

There are a number of respiratory diseases characterized by the presence of excess neutrophil elastase (NE) activity in tissues, including cystic fibrosis and chronic obstructive pulmonary disease (COPD). NE is considered a primary contributor to disease development, but the precise mechanism has yet to be fully determined. We hypothesized that NE alters the function of macrophages (Mɸ) which play a critical role in many physiological processes in healthy lungs. We demonstrate that monocyte-derived Mɸ exposed to NE releases active matrix metalloproteinases (MMPs), increase expression of pro-inflammatory cytokines TNFα, IL-1ß, and IL-8, and reduce capacity to phagocytose bacteria. Changes in Mɸ function following NE treatment were accompanied by increased adhesion and cytoskeleton re-arrangement, indicating the possibility of integrin involvement. To support this observation, we demonstrate that NE induces phosphorylation of kinases from the Src kinase family, a hallmark of integrin signaling activation. Moreover, pretreatment of Mɸ with a specific Src kinase inhibitor, PP2 completely prevents NE-induced pro-inflammatory cytokine production. Taken together these findings indicate that NE participates in lung destruction not only through direct proteolytic degradation of matrix proteins, but also through activation of Mɸ inflammatory and proteolytic functions.


Asunto(s)
Adhesión Celular , Citocinas/biosíntesis , Elastasa de Leucocito/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Activación Enzimática , Humanos , Inmunidad Innata , Integrinas/metabolismo , Macrófagos/inmunología , Metaloproteinasas de la Matriz/metabolismo , Familia-src Quinasas/metabolismo
13.
Cell Commun Signal ; 18(1): 140, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887613

RESUMEN

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD)-mediated liver disease is a toxic "gain-of-function" inflammation in the liver associated with intracellular retention of mutant alpha-1 antitrypsin. The clinical presentation of the disease includes fibrosis, cirrhosis and liver failure. However, the pathogenic mechanism of AATD-mediated liver disease is not well understood. Here, we investigated the role of plasma extracellular vesicles (EVs) in progression of AATD-mediated liver disease. METHODS: EVs were isolated from plasma of AATD individuals with liver disease and healthy controls. Their cytokines and miRNA content were examined by multiplex assay and small RNA sequencing. The bioactivity of EVs was assessed by qPCR, western blot analysis and immunofluorescent experiments using human hepatic stellate cells (HSCs) treated with EVs isolated from control or AATD plasma samples. RESULTS: We have found that AATD individuals have a distinct population of EVs with pathological cytokine and miRNA contents. When HSCs were cultured with AATD plasma derived-EVs, the expression of genes related to the development of fibrosis were significantly amplified compared to those treated with healthy control plasma EVs. CONCLUSION: AATD individuals have a distinct population of EVs with abnormal cytokine and miRNA contents and the capacity to activate HSCs and mediate fibrosis. Better understanding of the components which cause liver inflammation and fibrogenesis, leading to further liver injury, has the potential to lead to the development of new treatments or preventive strategies to prevent AATD-mediated liver disease. Video abstract.


Asunto(s)
Vesículas Extracelulares/patología , Cirrosis Hepática/patología , Hígado/patología , Deficiencia de alfa 1-Antitripsina/patología , Adulto , Anciano , Citocinas/análisis , Vesículas Extracelulares/genética , Femenino , Regulación de la Expresión Génica , Humanos , Hígado/metabolismo , Cirrosis Hepática/sangre , Cirrosis Hepática/complicaciones , Cirrosis Hepática/genética , Masculino , MicroARNs/análisis , MicroARNs/genética , Persona de Mediana Edad , Deficiencia de alfa 1-Antitripsina/sangre , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/genética
14.
Cells ; 8(12)2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817705

RESUMEN

Alpha 1-antitrypsin deficiency (AATD) is the most common genetic cause of liver disease in children and is associated with early-onset chronic liver disease in adults. AATD associated liver injury is caused by hepatotoxic retention of polymerized mutant alpha 1-antitrypsin molecules within the endoplasmic reticulum. Currently, there is no curative therapy for AATD. In this study, we selected small molecules with the potential to bind mutant alpha 1-antitrypsin (Z-variant) to inhibit its accumulation in hepatocytes. We used molecular docking to select candidate compounds that were validated in cell and animal models of disease. A crystal structure of polymerized alpha 1-antitrypsin molecule was used as the basis for docking 139,735 compounds. Effects of the top scoring compounds were investigated in a cell model that stably expresses Z-variant alpha 1-antitrypsin and in PiZ mice expressing Z-variant human alpha 1-antitrypsin (Z-hAAT), encoded by SERPINA1*E342K. 4','5-(Methylenedioxy)-2-nitrocinnamic acid was predicted to bind cleaved alpha 1-antitrypsin at the polymerization interface, and observed to co-localize with Z-hAAT, increase Z-hAAT degradation, inhibit intracellular accumulation of Z-hAAT, and alleviate liver fibrosis.


Asunto(s)
Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Inhibidores de Serina Proteinasa/farmacología , alfa 1-Antitripsina/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , Ratones Transgénicos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Multimerización de Proteína , Inhibidores de Serina Proteinasa/química , Relación Estructura-Actividad , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , alfa 1-Antitripsina/química
15.
J Biol Chem ; 294(16): 6240-6252, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30833329

RESUMEN

α1-Antitrypsin deficiency (AATD) is an inherited disease characterized by emphysema and liver disease. AATD is most often caused by a single amino acid substitution at position 342 in the mature protein, resulting in the Z mutation of the AAT gene (ZAAT). This substitution is associated with misfolding and accumulation of ZAAT in the endoplasmic reticulum (ER) of hepatocytes, causing a toxic gain of function. ERdj3 is an ER luminal DnaJ homologue, which, along with calreticulin, directly interacts with misfolded ZAAT. We hypothesize that depletion of each of these chaperones will change the fate of ZAAT polymers. Our study demonstrates that calreticulin modulation reveals a novel ZAAT degradation mechanism mediated by exosomes. Using human PiZZ hepatocytes and K42, a mouse calreticulin-deficient fibroblast cell line, our results show ERdj3 and calreticulin directly interact with ZAAT in PiZZ hepatocytes. Silencing calreticulin induces calcium independent ZAAT-ERdj3 secretion through the exosome pathway. This co-secretion decreases ZAAT aggregates within the ER of hepatocytes. We demonstrate that calreticulin has an inhibitory effect on exosome-mediated ZAAT-ERdj3 secretion. This is a novel ZAAT degradation process that involves a DnaJ homologue chaperone bound to ZAAT. In this context, calreticulin modulation may eliminate the toxic gain of function associated with aggregation of ZAAT in lung and liver, thus providing a potential new therapeutic approach to the treatment of AATD-related liver disease.


Asunto(s)
Calreticulina/biosíntesis , Exosomas/metabolismo , Mutación Missense , Proteolisis , alfa 1-Antitripsina/metabolismo , Sustitución de Aminoácidos , Animales , Calreticulina/genética , Línea Celular , Exosomas/genética , Exosomas/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Ratones , alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/metabolismo , Deficiencia de alfa 1-Antitripsina/patología
16.
J Immunol Methods ; 388(1-2): 18-24, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23195820

RESUMEN

Evaluation of human antibody responses to alpha-1 antitrypsin (AAT) in clinical trials and clinical practice has been limited by the lack of a validated assay. Here we describe the development and validation of an ELISA method for quantification of human and nonhuman primate antibody responses to human AAT. A reference anti-human AAT serum standard was generated using sera from a cynomolgus macaque injected with a recombinant adeno-associated virus vector expressing human AAT. The ELISA was validated for use with human serum dilutions as low as 1:10 and was able to distinguish between specific responses in cynomolgus serum and non-specific increases in apparent antibody titer in serum from subjects in a clinical trial of an AAT gene therapy vector.


Asunto(s)
Anticuerpos/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Deficiencia de alfa 1-Antitripsina/inmunología , alfa 1-Antitripsina/inmunología , Animales , Anticuerpos/sangre , Ensayo de Inmunoadsorción Enzimática/normas , Humanos , Macaca fascicularis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...