Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767295

RESUMEN

Plants growing in dense vegetation stands need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Belowground, root development is also adjusted in response to aboveground neighbour proximity. Canopies are dynamic and complex environments with heterogenous light cues in the far-red, red, blue and UV spectrum, which can be perceived with photoreceptors by spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR (PIF) transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we aim to review recent advances in how plants respond to heterogenous light cues and integrate these with other environmental signals.

2.
Plant Physiol ; 195(3): 1866-1879, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38401532

RESUMEN

Plant organs move throughout the diurnal cycle, changing leaf and petiole positions to balance light capture, leaf temperature, and water loss under dynamic environmental conditions. Upward movement of the petiole, called hyponasty, is one of several traits of the shade avoidance syndrome (SAS). SAS traits are elicited upon perception of vegetation shade signals such as far-red light (FR) and improve light capture in dense vegetation. Monitoring plant movement at a high temporal resolution allows studying functionality and molecular regulation of hyponasty. However, high temporal resolution imaging solutions are often very expensive, making this unavailable to many researchers. Here, we present a modular and low-cost imaging setup, based on small Raspberry Pi computers that can track leaf movements and elongation growth with high temporal resolution. We also developed an open-source, semiautomated image analysis pipeline. Using this setup, we followed responses to FR enrichment, light intensity, and their interactions. Tracking both elongation and the angle of the petiole, lamina, and entire leaf in Arabidopsis (Arabidopsis thaliana) revealed insight into R:FR sensitivities of leaf growth and movement dynamics and the interactions of R:FR with background light intensity. The detailed imaging options of this system allowed us to identify spatially separate bending points for petiole and lamina positioning of the leaf.


Asunto(s)
Arabidopsis , Luz , Hojas de la Planta , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Movimiento , Procesamiento de Imagen Asistido por Computador/métodos
3.
Nat Commun ; 14(1): 5827, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730832

RESUMEN

Plants detect their neighbors via various cues, including reflected light and touching of leaf tips, which elicit upward leaf movement (hyponasty). It is currently unknown how touch is sensed and how the signal is transferred from the leaf tip to the petiole base that drives hyponasty. Here, we show that touch-induced hyponasty involves a signal transduction pathway that is distinct from light-mediated hyponasty. We found that mechanostimulation of the leaf tip upon touching causes cytosolic calcium ([Ca2+]cyt induction in leaf tip trichomes that spreads towards the petiole. Both perturbation of the calcium response and the absence of trichomes reduce touch-induced hyponasty. Finally, using plant competition assays, we show that touch-induced hyponasty is adaptive in dense stands of Arabidopsis. We thus establish a novel, adaptive mechanism regulating hyponastic leaf movement in response to mechanostimulation by neighbors in dense vegetation.


Asunto(s)
Arabidopsis , Percepción del Tacto , Calcio , Tacto , Arabidopsis/genética , Hojas de la Planta
4.
Curr Biol ; 33(1): 75-85.e5, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36538931

RESUMEN

Although plants are immobile, many of their organs are flexible to move in response to environmental cues. In dense vegetation, plants detect neighbors through far-red light perception with their leaf tip. They respond remotely, with asymmetrical growth between the abaxial and adaxial sides of the leafstalk, the petiole. This results in upward movement that brings the leaf blades into better lit zones of the canopy. The plant hormone auxin is required for this response, but it is not understood how non-differential leaf tip-derived auxin can remotely regulate movement. Here, we show that remote signaling of far-red light promotes auxin accumulation in the abaxial petiole. This local auxin accumulation is facilitated by reinforcing an intrinsic directionality of the auxin transport protein PIN3 on the petiole endodermis, as visualized with a PIN3-GFP line. Using an auxin biosensor, we show that auxin accumulates in all cell layers from endodermis to epidermis in the abaxial petiole, upon far-red light signaling in the remote leaf tip. In the petiole, auxin elicits a response to both auxin itself as well as a second growth promoter; gibberellin. We show that this dual regulation is necessary for hyponastic leaf movement in response to light. Our data indicate that gibberellin is required to permit cell growth, whereas differential auxin accumulation determines which cells can grow. Our results reveal how plants can spatially relay information about neighbor proximity from their sensory leaf tips to the petiole base, thus driving adaptive growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/metabolismo , Giberelinas/metabolismo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Luz , Hojas de la Planta , Proteínas de Arabidopsis/metabolismo
5.
Plants (Basel) ; 9(8)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722230

RESUMEN

Light absorption by plants changes the composition of light inside vegetation. Blue (B) and red (R) light are used for photosynthesis whereas far-red (FR) and green light are reflected. A combination of UV-B, blue and R:FR-responsive photoreceptors collectively measures the light and temperature environment and adjusts plant development accordingly. This developmental plasticity to photoreceptor signals is largely regulated through the phytohormone auxin. The phytochrome, cryptochrome and UV Resistance Locus 8 (UVR8) photoreceptors are inactivated in shade and/or elevated temperature, which releases their repression of Phytochrome Interacting Factor (PIF) transcription factors. Active PIFs stimulate auxin synthesis and reinforce auxin signalling responses through direct interaction with Auxin Response Factors (ARFs). It was recently discovered that shade-induced hypocotyl elongation and petiole hyponasty depend on long-distance auxin transport towards target cells from the cotyledon and leaf tip, respectively. Other responses, such as phototropic bending, are regulated by auxin transport and signalling across only a few cell layers. In addition, photoreceptors can directly interact with components in the auxin signalling pathway, such as Auxin/Indole Acetic Acids (AUX/IAAs) and ARFs. Here we will discuss the complex interactions between photoreceptor and auxin signalling, addressing both mechanisms and consequences of these highly interconnected pathways.

6.
Mol Plant Pathol ; 20(4): 575-588, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30537296

RESUMEN

Intracellular nucleotide-binding leucine-rich repeat (NLR)-type immune receptors are a fundamental part of plant immune systems. As infection occurs at foci, activation of immune responses is typically non-uniform and non-synchronized, hampering the systematic dissection of their cellular effects and determining their phasing. We investigated the potato NLR Rx1 using the CESSNA (Controlled Expression of effectors for Synchronized and Systemic NLR Activation) platform. CESSNA-mediated Potato virus X coat protein (CP) expression allowed the monitoring of Rx1-mediated immune responses in a quantitative and reproducible manner. Rx1 was found to trigger a reactive oxygen species (ROS) burst and ion leakage within 1 h and a change in autofluorescence within 2 h after the induction of CP production. After 2 h, HIN1 expression was increased and single-stranded DNA (ssDNA) damage and loss of cellular integrity became apparent, followed by double-stranded DNA (dsDNA) damage after 3 h and increased PR-1a, LOX, ERF1 and AOX1B expression and cell death at 4 h. Nuclear exclusion of Rx1 resulted in increased basal levels of ROS and permitted Rx1 activation by an Rx1-breaking CP variant. In contrast, nuclear-targeted Rx1 showed diminished basal ROS levels, and only avirulent CP could trigger a compromised ROS production. Both nuclear-excluded and nuclear-targeted Rx1 triggered a delayed ion leakage compared with non-modified Rx1, suggesting that ion leakage and ROS production originate from distinct signalling pathways. This work offers novel insights into the influence of Rx1 localization on its activity, and the interplay between Rx1-triggered processes.


Asunto(s)
Inmunidad de la Planta/fisiología , Receptores Inmunológicos/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA