Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 98: 117552, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38128296

RESUMEN

Decoration of nucleoside analogues with lipophilic groups often leads to compounds with improved antiviral activity. For example, N6-benzyladenosine derivatives containing elongated lipophilic substituents in the benzyl core efficiently inhibit reproduction of tick-borne encephalitis virus (TBEV), while N6-benzyladenosine itself potently inhibits reproduction of human enterovirus A71 (EV-A71). We have extended a series of N6-benzyladenosine analogues using effective synthetic methods of CC bond formation based on Pd-catalyzed cross-coupling reactions (Sonogashira and Suzuki) in order to study the influence of bulky lipophilic substituents in the N6 position of adenosine on the antiviral activity against flaviviruses, such as TBEV, yellow fever virus (YFV) and West Nile virus (WNV), as well as a panel of enteroviruses including EV-A71, Echovirus 30 (E30), and poliovirus type 2 (PV2). Reproduction of tested flaviviruses appeared to be inhibited by the micromolar concentrations of the compounds, while cytotoxicity in most cases was beyond the detection limit. Time-of-addition studies demonstrated that the hit compounds inhibited the stage of viral RNA synthesis, but not the stages of the viral entry or protein translation. As a result, several new promising antiflaviviral leads have been identified. On the other hand, none of the synthesized compounds inhibited enterovirus reproduction, indicating a possibility of involvement of flavivirus-specific pathways in their mechanism of action.


Asunto(s)
Adenosina/análogos & derivados , Virus de la Encefalitis Transmitidos por Garrapatas , Virus del Nilo Occidental , Humanos , Paladio , Antivirales/farmacología , Antivirales/química
2.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36232653

RESUMEN

Cytokinins, classical phytohormones, affect all stages of plant ontogenesis, but their application in agriculture is limited because of the lack of appropriate ligands, including those specific for individual cytokinin receptors. In this work, a series of chiral N6-benzyladenine derivatives were studied as potential cytokinins or anticytokinins. All compounds contained a methyl group at the α-carbon atom of the benzyl moiety, making them R- or S-enantiomers. Four pairs of chiral nucleobases and corresponding ribonucleosides containing various substituents at the C2 position of adenine heterocycle were synthesized. A nucleophilic substitution reaction by secondary optically active amines was used. A strong influence of the chirality of studied compounds on their interaction with individual cytokinin receptors of Arabidopsis thaliana was uncovered in in vivo and in vitro assays. The AHK2 and CRE1/AHK4 receptors were shown to have low affinity for the studied S-nucleobases while the AHK3 receptor exhibited significant affinity for most of them. Thereby, three synthetic AHK3-specific cytokinins were discovered: N6-((S)-α-methylbenzyl)adenine (S-MBA), 2-fluoro,N6-((S)-α-methylbenzyl)adenine (S-FMBA) and 2-chloro,N6-((S)-α-methylbenzyl)adenine (S-CMBA). Interaction patterns between individual receptors and specific enantiomers were rationalized by structure analysis and molecular docking. Two other S-enantiomers (N6-((S)-α-methylbenzyl)adenosine, 2-amino,N6-((S)-α-methylbenzyl)adenosine) were found to exhibit receptor-specific and chirality-dependent anticytokinin properties.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ribonucleósidos , Adenina , Adenosina/farmacología , Aminas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Compuestos de Bencilo , Carbono , Proteínas Portadoras , Citocininas/química , Citocininas/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Reguladores del Crecimiento de las Plantas , Proteínas Quinasas/metabolismo , Purinas
3.
Molecules ; 27(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35458631

RESUMEN

Inhibition of human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1) by different chiral lipophilic nucleoside derivatives was studied. New Tdp1 inhibitors were found in the series of the studied compounds with IC50 = 2.7-6.7 µM. It was shown that D-lipophilic nucleoside derivatives manifested higher inhibition activity than their L-analogs, and configuration of the carbohydrate moiety can influence the mechanism of Tdp1 inhibition.


Asunto(s)
Nucleósidos , Hidrolasas Diéster Fosfóricas , Humanos , Ligandos , Nucleósidos/farmacología , Hidrolasas Diéster Fosfóricas/química
4.
Toxicol In Vitro ; 82: 105355, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35390475

RESUMEN

One of the promising approaches in the development of nucleoside prodrugs is to use the nucleoside analogs containing lipophilic biodegradable residues, which are cleaved to biologically active forms after metabolic transformations in the cell. The introduction of such fragments makes it possible to reduce the general toxicity of the drug candidate and increase its stability in the cell. In order to study the influence of biodegradable lipophilic groups on antiviral activity and cytotoxicity, in this work we synthesized N6-benzyl-2',3',5'-tri-O-nicotinoyl adenosine and N6-(3-fluorobenzyl)-2',3',5'-tri-O-nicotinoyl adenosine, derivatives of N6-benzyladenosine (BAR) and N6-(3-fluorobenzyl)adenosine (FBAR), which had previously shown prominent antiviral activity against human enterovirus EV-A71 but appeared to be cytotoxic. The obtained fully-O-nicotinoylated BAR and FBAR inhibited reproduction of EV-A71 strains BrCr and 46973 and manifested significantly lower cytotoxicity compared to non-protected compounds. In addition, we performed enzymatic hydrolysis of the fully-O-nicotinoylated FBAR in the presence of esterases (CalB and PLE) to investigate metabolic degradation of O-nicotinoylated compounds in cells. Both enzymes hydrolyzed the tested substrate to form the corresponding O-deprotected nucleoside that may suggest the role of hydrolase-type enzymes as general participants of metabolic activation of O-nicotinoylated prodrugs in different cells.


Asunto(s)
Enterovirus Humano A , Profármacos , Ribonucleósidos , Adenosina/farmacología , Antivirales/toxicidad , Compuestos de Bencilo , Enterovirus Humano A/fisiología , Humanos , Nucleósidos , Profármacos/farmacología , Purinas , Ribonucleósidos/farmacología
5.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269937

RESUMEN

A comparative analysis of the transglycosylation conditions catalyzed by E. coli nucleoside phosphorylases, leading to the formation of 2'-deoxynucleosides, was performed. We demonstrated that maximal yields of 2'-deoxynucleosides, especially modified, can be achieved under small excess of glycosyl-donor (7-methyl-2'-deoxyguanosine, thymidine) and a 4-fold lack of phosphate. A phosphate concentration less than equimolar one allows using only a slight excess of the carbohydrate residue donor nucleoside to increase the reaction's output. A three-step methodology was elaborated for the preparative synthesis of purine-modified 2'-deoxyribonucleosides, starting from the corresponding ribonucleosides.


Asunto(s)
Ribonucleósidos , Escherichia coli , Nucleósidos/química , Pentosiltransferasa , Fosfatos , Purina-Nucleósido Fosforilasa , Purinas , Timidina
6.
Curr Protoc ; 2(1): e347, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35050551

RESUMEN

A simple and efficient method for the preparation of α-D-ribose 1-phosphate and 2-deoxy-α-D-ribose 1-phosphate, key intermediates in nucleoside metabolism and important starting compounds for the enzymatic synthesis of various modified nucleosides, has been proposed. It consists in near-irreversible enzymatic phosphorolysis of readily prepared hydroiodide salts of 7-methylguanosine and 7-methyl-2'-deoxyguanosine, respectively, in the presence of purine nucleoside phosphorylase. α-D-Ribose 1-phosphate and 2-deoxy-α-D-ribose 1-phosphate are obtained in near quantitative yields (by HPLC analysis) and 74%-94% yields after their isolation and purification. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of α-D-ribose 1-phosphate barium salt (4a) Alternate Protocol 1: Preparation of 2-deoxy-α-D-ribose 1-phosphate barium salt (4b) Basic Protocol 2: Preparation of α-D-ribose 1-phosphate bis(cyclohexylammonium) salt (5a) Alternate Protocol 2: Preparation of 2-deoxy-α-D-ribose 1-phosphate bis(cyclohexylammonium) salt (5b).


Asunto(s)
Desoxiguanosina , Desoxiguanosina/análogos & derivados , Guanosina/análogos & derivados , Ribosamonofosfatos
7.
Molecules ; 28(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36615517

RESUMEN

The use of cancer chemotherapy sensitizers is a promising approach to induce the effect of clinically used anticancer treatments. One of the interesting targets is Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), a DNA-repair enzyme, that may prevent the action of clinical Topoisomerase 1 (Top1) inhibitors, such as topotecan (Tpc). Tdp1 eliminates covalent Top1-DNA (Top1c) complexes that appear under the action of topotecan and determines the cytotoxic effect of this drug. We hypothesize that Tdp1 inhibition would sensitize cells towards the effect of Tpc. Herein, we report the synthesis and study of lipophilic derivatives of purine nucleosides that efficiently suppress Tdp1 activity, with IC50 values in the 0.3-22.0 µM range. We also showed that this compound class can enhance DNA damage induced by topotecan in vitro by Comet assay on human cell lines HeLa and potentiate the antitumor effect of topotecan in vivo on a mice ascitic Krebs-2 carcinoma model. Thereby, this type of compound may be useful to develop drugs, that sensitize the effect of topotecan and reduce the required dose and, as a result, side effects.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Topotecan , Animales , Ratones , Humanos , Topotecan/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Nucleósidos de Purina , Relación Estructura-Actividad , Inhibidores de Topoisomerasa I/farmacología , Esterasas/metabolismo , Daño del ADN , ADN , ADN-Topoisomerasas de Tipo I/metabolismo
8.
Molecules ; 25(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823658

RESUMEN

Inhibition of DNA repair enzymes tyrosyl-DNA phosphodiesterase 1 and poly(ADP-ribose)polymerases 1 and 2 in the presence of pyrimidine nucleoside derivatives was studied here. New effective Tdp1 inhibitors were found in a series of nucleoside derivatives possessing 2',3',5'-tri-O-benzoyl-d-ribofuranose and 5-substituted uracil moieties and have half-maximal inhibitory concentrations (IC50) in the lower micromolar and submicromolar range. 2',3',5'-Tri-O-benzoyl-5-iodouridine manifested the strongest inhibitory effect on Tdp1 (IC50 = 0.6 µM). A decrease in the number of benzoic acid residues led to a marked decline in the inhibitory activity, and pyrimidine nucleosides lacking lipophilic groups (uridine, 5-fluorouridine, 5-chlorouridine, 5-bromouridine, 5-iodouridine, and ribothymidine) did not cause noticeable inhibition of Tdp1 (IC50 > 50 µM). No PARP1/2 inhibitors were found among the studied compounds (residual activity in the presence of 1 mM substances was 50-100%). Several O-benzoylated uridine and cytidine derivatives strengthened the action of topotecan on HeLa cervical cancer cells.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Hidrolasas Diéster Fosfóricas/metabolismo , Nucleósidos de Pirimidina/química , Nucleósidos de Pirimidina/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/toxicidad , Células HeLa , Humanos , Nucleósidos de Pirimidina/toxicidad
9.
Biomolecules ; 10(1)2020 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-31948077

RESUMEN

The biosynthesis of aromatic cytokinins in planta, unlike isoprenoid cytokinins, is still unknown. To compare the final steps of biosynthesis pathways of aromatic and isoprenoid cytokinins, we synthesized a series of nucleoside derivatives of natural cytokinins starting from acyl-protected ribofuranosyl-, 2'-deoxyribofuranosyl- and 5'-deoxyribofuranosyladenine derivatives using stereoselective alkylation with further deblocking. Their cytokinin activity was determined in two bioassays based on model plants Arabidopsis thaliana and Amaranthus caudatus. Unlike cytokinins, cytokinin nucleosides lack the hormonal activity until the ribose moiety is removed. According to our experiments, ribo-, 2'-deoxyribo- and 5'-deoxyribo-derivatives of isoprenoid cytokinin N6-isopentenyladenine turned in planta into active cytokinins with clear hormonal activity. As for aromatic cytokinins, both 2'-deoxyribo- and 5'-deoxyribo-derivatives did not exhibit analogous activity in Arabidopsis. The 5'-deoxyribo-derivatives cannot be phosphorylated enzymatically in vivo; therefore, they cannot be "activated" by the direct LOG-mediated cleavage, largely occurring with cytokinin ribonucleotides in plant cells. The contrasting effects exerted by deoxyribonucleosides of isoprenoid (true hormonal activity) and aromatic (almost no activity) cytokinins indicates a significant difference in the biosynthesis of these compounds.


Asunto(s)
Citocininas/biosíntesis , Citocininas/química , Terpenos/química , Arabidopsis/metabolismo , Citocininas/metabolismo , Nucleósidos/análogos & derivados , Nucleósidos/síntesis química , Nucleósidos/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Terpenos/metabolismo
10.
Curr Protoc Nucleic Acid Chem ; 78(1): e92, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31529780

RESUMEN

In this article, the earlier reported procedure for the synthesis of 2'-O-ß-D-ribofuranosyl nucleosides was extended to the synthesis of 2'-O-α-D-ribofuranosyl adenosine, a monomeric unit of poly(ADP-ribose). It consists in condensation of a small excess of 1-O-acetyl-2,3,5-tri-O-benzoyl-α,ß-D-arabinofuranose activated with tin tetrachloride with 3',5'-O-tetra-isopropyldisiloxane-1,3-diyl-ribonucleosides in 1,2-dichloroethane. The following debenzoylation and silylation of arabinofuranosyl residue and inversion of configuration at C-2'' atom of arabinofuranosyl residue and final removal of silyl protective groups gave 2'-O-α-D-ribofuranosyl adenosine in overall 13% to 21% yield. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Adenosina/química , Poli Adenosina Difosfato Ribosa/síntesis química
11.
Curr Protoc Nucleic Acid Chem ; 75(1): e61, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30299587

RESUMEN

This unit describes an effective method for the preparation of natural cytokinins and their synthetic derivatives based on enzymatic cleavage of the N-glycosidic bond of N6 -substituted adenosine or O6 -substituted inosine derivatives in the presence of purine nucleoside phosphorylase (PNP) and Na2 HAsO4 . The arsenolysis reaction is irreversible due to the hydrolysis of the resulting α-D-ribose-1-arsenate. As a result, the desired products are formed in near-quantitative yields, as indicated by high-performance liquid chromatography (HPLC) analysis, and can easily be isolated. In the strategy used here, the ribose residue acts as a protective group. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Arseniatos/química , Citocininas/síntesis química , Nucleósidos de Purina/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo , Cromatografía Líquida de Alta Presión , Citocininas/química , Citocininas/aislamiento & purificación , Espectrometría de Masas , Espectroscopía de Protones por Resonancia Magnética
12.
J Enzyme Inhib Med Chem ; 33(1): 1415-1429, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30191738

RESUMEN

A new class of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors based on disaccharide nucleosides was identified. TDP1 plays an essential role in the resistance of cancer cells to currently used antitumour drugs based on Top1 inhibitors such as topotecan and irinotecan. The most effective inhibitors investigated in this study have IC50 values (half-maximal inhibitory concentration) in 0.4-18.5 µM range and demonstrate relatively low own cytotoxicity along with significant synergistic effect in combination with anti-cancer drug topotecan. Moreover, kinetic parameters of the enzymatic reaction and fluorescence anisotropy were measured using different types of DNA-biosensors to give a sufficient insight into the mechanism of inhibitor's action.


Asunto(s)
Antineoplásicos/farmacología , Disacáridos/farmacología , Nucleósidos/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Topotecan/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Disacáridos/síntesis química , Disacáridos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/química , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/química , Relación Estructura-Actividad , Topotecan/síntesis química , Topotecan/química
13.
Curr Protoc Nucleic Acid Chem ; 72(1): 14.15.1-14.15.16, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29927122

RESUMEN

This unit describes preparation of N6 -substituted adenosines (cytokinin nucleosides), a unique class of compounds with a wide spectrum of biological activities. Regioselective alkylation of N6 -acetyl-2',3',5'-tri-O-acetyladenosine with alkyl halides under basic conditions or alcohols under Mitsunobu conditions followed by deprotection are the methods of choice for the preparation of the cytokinin nucleosides. The attractive feature of this strategy is the possibility of using a broad library of commercially available alkyl halides and alcohols under mild reaction conditions. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Adenosina/síntesis química , Citocininas/química , Nucleósidos/química , Adenosina/química , Alquilación , Halógenos/química , Estructura Molecular
14.
Org Biomol Chem ; 16(12): 2156-2163, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29520402

RESUMEN

Nucleoside phosphorylases are involved in the salvage pathways of nucleoside biosynthesis and catalyze the reversible reaction of a nucleobase with α-d-ribose-1-phosphate to yield a corresponding nucleoside and an inorganic phosphate. The equilibrium of these reactions is shifted towards nucleosides, especially in the case of purines. Purine nucleoside phosphorylase (PNP, EC 2.4.2.1) is widely used in labs and industry for the synthesis of nucleosides of practical importance. Bacterial PNPs have relatively broad substrate specificity utilizing a wide range of purines with different substituents to form the corresponding nucleosides. To shift the reaction in the opposite direction we have used arsenolysis instead of phosphorolysis. This reaction is irreversible due to the hydrolysis of the resulting α-d-ribose-1-arsenate. As a result, heterocyclic bases are formed in quantitative yields and can be easily isolated. We have developed a novel method for the preparation of cytokinins based on the enzymatic cleavage of the N-glycosidic bond of N6-substituted adenosines in the presence of PNP and Na2HAsO4. According to the HPLC analysis the conversion proceeds in quantitative yields. In the proposed strategy the ribose residue acts as a protective group. No contamination of the final products with AsO43- has been detected via HPLC-HRMS; simple analytical arsenate detection via ESI-MS has been proposed.


Asunto(s)
Citocininas/síntesis química , Nucleósidos/química , Adenosina/análogos & derivados , Adenosina/metabolismo , Arseniatos/química , Proteínas Bacterianas , Cromatografía Líquida de Alta Presión , Purina-Nucleósido Fosforilasa/metabolismo , Ribosa/química
15.
Phytochemistry ; 149: 161-177, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29544164

RESUMEN

Biological effects of hormones in both plants and animals are based on high-affinity interaction with cognate receptors resulting in their activation. The signal of cytokinins, classical plant hormones, is perceived in Arabidopsis by three homologous membrane receptors: AHK2, AHK3, and CRE1/AHK4. To study the cytokinin-receptor interaction, we used 25 derivatives of potent cytokinin N6-benzyladenine (BA) with substituents in the purine heterocycle and/or in the side chain. The study was focused primarily on individual cytokinin receptors from Arabidopsis. The main in planta assay system was based on Arabidopsis double mutants retaining only one isoform of cytokinin receptors and harboring cytokinin-sensitive reporter gene. Classical cytokinin biotest with Amaranthus seedlings was used as an additional biotest. In parallel, the binding of ligands to individual cytokinin receptors was assessed in the in vitro test system. Quantitative comparison of results of different assays confirmed the partial similarity of ligand-binding properties of receptor isoforms. Substituents at positions 8 and 9 of adenine moiety, elongated linker up to 4 methylene units, and replacement of N6 by sulfur or oxygen have resulted in the suppression of cytokinin activity of the derivative toward all receptors. Introduction of a halogen into position 2 of adenine moiety, on the contrary, often increased the ligand activity, especially toward AHK3. Features both common and distinctive of cytokinin receptors in Arabidopsis and Amaranthus were revealed, highlighting species specificity of the cytokinin perception apparatus. Correlations between the extent to which a compound binds to a receptor in vitro and its ability to activate the same receptor in planta were evaluated for each AHK protein. Interaction patterns between individual receptors and ligands were rationalized by structure analysis and molecular docking in sensory modules of AHK receptors. The best correlation between docking scores and specific binding was observed for AHK3. In addition, receptor-specific ligands have been discovered with unique properties to predominantly activate or block distinct cytokinin receptors. These ligands are promising for practical application and as molecular tools in the study of the cytokinin perception by plant cells.


Asunto(s)
Adenina/análogos & derivados , Citocininas/metabolismo , Receptores de Citocinas/efectos de los fármacos , Adenina/farmacología , Arabidopsis/química , Estructura Molecular
16.
Molecules ; 22(7)2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28726764

RESUMEN

Recently, we demonstrated that the natural cytokinin nucleosides N6-isopentenyladenosine (iPR) and N6-benzyladenosine (BAPR) exert a potent and selective antiviral effect on the replication of human enterovirus 71. In order to further characterize the antiviral profile of this class of compounds, we generated a series of fluorinated derivatives of BAPR and evaluated their activity on the replication of human enterovirus 71 in a cytopathic effect (CPE) reduction assay. The monofluorination of the BAPR-phenyl group changed the selectivity index (SI) slightly because of the concomitant high cell toxicity. Interestingly, the incorporation of a second fluorine atom resulted in a dramatic improvement of selectivity. Moreover, N6-trifluoromethylbenzyladenosines derivatives (9-11) exhibited also a very interesting profile, with low cytotoxicity observed. In particular, the analogue N6-(3-trifluoromethylbenzyl)-adenosine (10) with a four-fold gain in potency as compared to BAPR and the best SI in the class represents a promising candidate for further development.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Enterovirus Humano A/efectos de los fármacos , Halogenación , Humanos , Relación Estructura-Actividad
17.
Bioorg Med Chem Lett ; 27(5): 1267-1273, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28159412

RESUMEN

Design and development of nucleoside analogs is an established strategy in the antiviral drug discovery field. Nevertheless, for many viruses the coverage of structure-activity relationships (SAR) in the nucleoside chemical space is not sufficient. Here we present the nucleoside SAR exploration for tick-borne encephalitis virus (TBEV), a member of Flavivirus genus. Promising antiviral activity may be achieved by introduction of large hydrophobic substituents in the position 6 of adenosine or bulky silyl groups to the position 5'. Introduction of methyls to the ribose moiety does not lead to inhibition of TBEV reproduction. Possible mechanisms of action of these nucleosides include the inhibition of viral entry or interaction with TBEV non-structural protein 5 methyltransferase or RNA-dependent RNA polymerase domains.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Nucleósidos/química , Nucleósidos/farmacología , Replicación Viral/efectos de los fármacos , Animales , Antivirales/síntesis química , Humanos , Estructura Molecular , Nucleósidos/síntesis química , Relación Estructura-Actividad , Internalización del Virus/efectos de los fármacos
18.
Curr Top Med Chem ; 16(23): 2562-76, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27086793

RESUMEN

Cytokinin nucleosides exhibit antitumor, antiviral, antiprotozoal, blood pressure reducing, anti-inflammatory, and antipsychotic activity. These compounds also influence platelet aggregation and exhibit some other biological activities. Cytokinins are N6-substituted adenines and represent an important group of phytohormones with diverse biochemical functions in plants, stimulating cell division and plant growth. The main structural feature of cytokinin nucleosides is the presence of a hydrophobic hydrocarbon moiety at the N6-position of adenosine. This moiety is responsible for a difference in physicochemical and biological properties as compared to adenosine. 1-N-Tuberculosinyladenosine and N6-tuberculosinyladenosine are specifically produced by Mycobacterium tuberculosis as components of the plasmatic membrane, thus making them attractive targets for clinical test development. Structurally related compounds were found in marine organisms. It has been shown also that tRNA contains N6-isoprenyladenosine and some other related compounds. This review summarizes the structural features, biological activity, and the synthesis of cytokinin nucleosides and some of their closely related derivatives such as cytokinins and terpene derivatives of adenine.


Asunto(s)
Productos Biológicos/química , Citocininas/farmacología , Nucleósidos/farmacología , Aminación , Línea Celular Tumoral , Humanos
19.
Eur J Med Chem ; 111: 84-94, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26854380

RESUMEN

Very recently, we demonstrated that N(6)-isopentenyladenosine, a cytokinin nucleoside, exerts a potent and selective antiviral effect on the replication of human enterovirus 71. The present study is devoted to the structure optimization of another natural compound: N(6)-benzyladenosine. We mainly focused on the exploration of the size and nature of the linker between the adenine and the phenyl ring, as well as on the necessity of the D-ribose residue. More than 30 analogues of N(6)-benzyladenosine were prepared and their antiviral properties were evaluated. Two main methodologies were used for preparation: N(6)-acetyl-2',3',5'-tri-O-acetyladenosine can be regioselectively alkylated either by alkyl halides under base promoted conditions or by alcohols in Mitsunobu reactions. After deacylation with 4 M PrNH2 in MeOH at room temperature for one day, the desired products were obtained in overall high yields. Analysis of the structure-activity relationship clearly shows that the optimal size of the linker is limited to 2 or 3 atoms (compounds 4-7). 2'-Deoxyadenosine derivatives did not elicit any inhibitory or cytotoxic effect, while 5'-deoxynucleosides still induced some cell protective antiviral activity. Based on these observations, it can be hypothesized that there may be another mechanism that is at the base of the antiviral activity of these compounds against enterovirus 71 besides a possible 5'-triphosphorylation followed by a putative inhibitory effect on RNA synthesis.


Asunto(s)
Adenosina/análogos & derivados , Antivirales/farmacología , Enterovirus Humano A/efectos de los fármacos , Adenosina/síntesis química , Adenosina/química , Adenosina/farmacología , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
20.
Artículo en Inglés | MEDLINE | ID: mdl-26158567

RESUMEN

Several methods for the preparation of some N(6)-substituted adenosines based on selective 1-N-alkylation with subsequent Dimroth rearrangement were developed. The proposed methods seem to be effective for the preparation of natural N(6)-isopentenyl- and N(6)-benzyladenosines, which are known to possess pronounced biological activities. Direct 1-N-alkylation of 2',3',5'-tri-O-acetyladenosine and 3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides in N,N-dimethylformamide (DMF) in the presence of BaCO3 and KI gave 1-N-substituted derivatives with quantitative yields, whereas 1-N-alkylation of adenosine was accompanied by significant O-alkylation. Moreover, the reaction of trimethylsilyl derivatives of N(6)-acetyl-2',3',5'-tri-O-acetyladenosine and N(6)-acetyl-3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides leads to the formation of the stable 1-N-substituted adenosines. Dimroth rearrangement of 1-N-substituted adenosines in aqueous ammonia yields pure N(6)-substituted adenosines.


Asunto(s)
Adenosina/análogos & derivados , Desoxiadenosinas/química , Adenosina/química , Alquilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...