Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 86(24): 17762-17773, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34852456

RESUMEN

Boroxinate complexes of VAPOL and VANOL are a chiral anionic platform that can serve as a versatile staging arena for asymmetric catalysis. The structural underpinning of the platform is a chiral polyborate core that covalently links together alcohols (or phenols) and vaulted biaryl ligands. The polyborate platform is assembled in situ by the substrate of the reaction, and thus a multiplex of chiral catalysts can be rapidly assembled from various alcohols (or phenols) and bis-phenol ligands for screening of catalyst activity. In the present study, variations in the steric and electronic properties of the phenol/alcohol component of the boroxinate catalyst are probed to reveal their effects on the asymmetric induction in the catalytic asymmetric aziridination reaction. A Hammett study is consistent with a mechanism in which the two substrates are hydrogen-bonded to the boroxinate core in the enantiogenic step. The results of the Hammett study are supported by a computational study in which it is found that the H-O distance of the protonated imine hydrogen bonded to the anionic boroxinate core decreases with an increase in the electron releasing ability of the phenol unit incorporated into the boroxinate. The results are not consistent with a mechanism in which the boroxinate catalyst functions as a Lewis acid and activates the imine by a Lewis acid/Lewis base interaction.


Asunto(s)
Aziridinas , Aniones , Catálisis , Electrónica , Estereoisomerismo
2.
J Am Chem Soc ; 139(30): 10267-10285, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28657739

RESUMEN

VANOL and VAPOL ligands are known to react with three equivalents of B(OPh)3 to form a catalytic species that contains a boroxinate core with three boron atoms, and these have proven to be effective catalysts for a number of reactions. However, it was not known whether the closely related BINOL ligand will likewise form a boroxinate species. It had simply been observed that mixtures of BINOL and B(OPh)3 were very poor catalysts compared to the same mixtures with VANOL or VAPOL. Borate esters of BINOL have been investigated as chiral catalysts, and these include meso-borates, spiro-borates, and diborabicyclo-borate esters. Borate esters are often in equilibrium, and their structures can be determined by stoichiometry and/or thermodynamics, especially in the presence of a base. The present study examines the structures of borate esters of BINOL that are produced with different stoichiometric combinations of BINOL with B(OPh)3 in the presence and absence of a base. Depending on conditions, pyro-borates, spiro-borates, and boroxinate species can be generated and their effectiveness in a catalytic asymmetric aziridination was evaluated. The finding is that BINOL borate species are not necessarily inferior catalysts to those of VANOL and VAPOL but that, under the conditions, BINOL forms two different catalytic species (a boroxinate and a spiro-borate) that give opposite asymmetric inductions. However, many BINOL derivatives with substitutents in the 3- and 3'-positions gave only the boroxinate species and the 3,3'-Ph2BINOL ligand gave a boroxinate catalyst that gives excellent inductions in the aziridination reaction. BINOL derivatives with larger groups in the 3,3'-position will not form either spiro-borates or boroxinate species and thus are not effective catalysts at all.


Asunto(s)
Compuestos de Boro/química , Naftoles/química , Compuestos de Espiro/química , Ligandos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...