Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Database (Oxford) ; 20242024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537198

RESUMEN

Curation of biomedical knowledge into systems biology diagrammatic or computational models is essential for studying complex biological processes. However, systems-level curation is a laborious manual process, especially when facing ever-increasing growth of domain literature. New findings demonstrating elaborate relationships between multiple molecules, pathways and cells have to be represented in a format suitable for systems biology applications. Importantly, curation should capture the complexity of molecular interactions in such a format together with annotations of the involved elements and support stable identifiers and versioning. This challenge calls for novel collaborative tools and platforms allowing to improve the quality and the output of the curation process. In particular, community-based curation, an important source of curated knowledge, requires support in role management, reviewing features and versioning. Here, we present Biological Knowledge Curation (BioKC), a web-based collaborative platform for the curation and annotation of biomedical knowledge following the standard data model from Systems Biology Markup Language (SBML). BioKC offers a graphical user interface for curation of complex molecular interactions and their annotation with stable identifiers and supporting sentences. With the support of collaborative curation and review, it allows to construct building blocks for systems biology diagrams and computational models. These building blocks can be published under stable identifiers and versioned and used as annotations, supporting knowledge building for modelling activities.


Asunto(s)
Programas Informáticos , Biología de Sistemas , Curaduría de Datos
2.
Front Immunol ; 14: 1257321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022524

RESUMEN

Chronic inflammatory diseases (CIDs), including inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are thought to emerge from an impaired complex network of inter- and intracellular biochemical interactions among several proteins and small chemical compounds under strong influence of genetic and environmental factors. CIDs are characterised by shared and disease-specific processes, which is reflected by partially overlapping genetic risk maps and pathogenic cells (e.g., T cells). Their pathogenesis involves a plethora of intracellular pathways. The translation of the research findings on CIDs molecular mechanisms into effective treatments is challenging and may explain the low remission rates despite modern targeted therapies. Modelling CID-related causal interactions as networks allows us to tackle the complexity at a systems level and improve our understanding of the interplay of key pathways. Here we report the construction, description, and initial applications of the SYSCID map (https://syscid.elixir-luxembourg.org/), a mechanistic causal interaction network covering the molecular crosstalk between IBD, RA and SLE. We demonstrate that the map serves as an interactive, graphical review of IBD, RA and SLE molecular mechanisms, and helps to understand the complexity of omics data. Examples of such application are illustrated using transcriptome data from time-series gene expression profiles following anti-TNF treatment and data from genome-wide associations studies that enable us to suggest potential effects to altered pathways and propose possible mechanistic biomarkers of treatment response.


Asunto(s)
Artritis Reumatoide , Enfermedades Inflamatorias del Intestino , Lupus Eritematoso Sistémico , Humanos , Inhibidores del Factor de Necrosis Tumoral , Artritis Reumatoide/etiología , Artritis Reumatoide/genética , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/genética , Resultado del Tratamiento , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/genética
3.
BMJ Open ; 13(8): e071380, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37597865

RESUMEN

INTRODUCTION: Chronic inflammatory diseases like rheumatoid arthritis (RA) and neurodegenerative disorders like Parkinson's disease (PD) have recently been associated with a decreased diversity in the gut microbiome, emerging as key driver of various diseases. The specific interactions between gut-borne microorganisms and host pathophysiology remain largely unclear. The microbiome can be modulated by interventions comprising nutrition.The aim of our clinical study is to (1) examine effects of prolonged fasting (PF) and time-restricted eating (TRE) on the outcome parameters and the immunophenotypes of RA and PD with (2) special consideration of microbial taxa and molecules associated with changes expected in (1), and (3) identify factors impacting the disease course and treatment by in-depth screening of microorganisms and molecules in personalised HuMiX gut-on-chip models, to identify novel targets for anti-inflammatory therapy. METHODS AND ANALYSIS: This trial is an open-label, multicentre, controlled clinical trial consisting of a cross-sectional and a longitudinal study. A total of 180 patients is recruited. For the cross-sectional study, 60 patients with PD, 60 patients with RA and 60 healthy controls are recruited at two different, specialised clinical sites. For the longitudinal part, 30 patients with PD and 30 patients with RA undergo 5-7 days of PF followed by TRE (16:8) for a period of 12 months. One baseline visit takes place before the PF intervention and 10 follow-up visits will follow over a period of 12 months (April 2021 to November 2023). ETHICS AND DISSEMINATION: Ethical approval was obtained to plan and conduct the trial from the institutional review board of the Charité-Universitätsmedizin Berlin (EA1/204/19), the ethics committee of the state medical association (Landesärztekammer) of Hessen (2021-2230-zvBO) and the Ethics Review Panel (ERP) of the University of Luxembourg (ERP 21-001 A ExpoBiome). The results of this study will be disseminated through peer-reviewed publications, scientific presentations and social media. TRIAL REGISTRATION NUMBER: NCT04847011.


Asunto(s)
Artritis Reumatoide , Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Estudios Transversales , Enfermedad de Parkinson/terapia , Estudios Longitudinales , Ayuno , Alemania , Artritis Reumatoide/terapia , Comités de Ética en Investigación , Estudios Multicéntricos como Asunto
4.
Front Bioinform ; 3: 1101505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502697

RESUMEN

Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.

5.
Front Bioinform ; 3: 1197310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426048

RESUMEN

As a conceptual model of disease mechanisms, a disease map integrates available knowledge and is applied for data interpretation, predictions and hypothesis generation. It is possible to model disease mechanisms on different levels of granularity and adjust the approach to the goals of a particular project. This rich environment together with requirements for high-quality network reconstruction makes it challenging for new curators and groups to be quickly introduced to the development methods. In this review, we offer a step-by-step guide for developing a disease map within its mainstream pipeline that involves using the CellDesigner tool for creating and editing diagrams and the MINERVA Platform for online visualisation and exploration. We also describe how the Neo4j graph database environment can be used for managing and querying efficiently such a resource. For assessing the interoperability and reproducibility we apply FAIR principles.

6.
Cancer Gene Ther ; 30(10): 1330-1345, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37420093

RESUMEN

Therapy Induced Senescence (TIS) leads to sustained growth arrest of cancer cells. The associated cytostasis has been shown to be reversible and cells escaping senescence further enhance the aggressiveness of cancers. Chemicals specifically targeting senescent cells, so-called senolytics, constitute a promising avenue for improved cancer treatment in combination with targeted therapies. Understanding how cancer cells evade senescence is needed to optimise the clinical benefits of this therapeutic approach. Here we characterised the response of three different NRAS mutant melanoma cell lines to a combination of CDK4/6 and MEK inhibitors over 33 days. Transcriptomic data show that all cell lines trigger a senescence programme coupled with strong induction of interferons. Kinome profiling revealed the activation of Receptor Tyrosine Kinases (RTKs) and enriched downstream signaling of neurotrophin, ErbB and insulin pathways. Characterisation of the miRNA interactome associates miR-211-5p with resistant phenotypes. Finally, iCell-based integration of bulk and single-cell RNA-seq data identifies biological processes perturbed during senescence and predicts 90 new genes involved in its escape. Overall, our data associate insulin signaling with persistence of a senescent phenotype and suggest a new role for interferon gamma in senescence escape through the induction of EMT and the activation of ERK5 signaling.


Asunto(s)
Insulinas , Melanoma , Humanos , Multiómica , Línea Celular Tumoral , Melanoma/tratamiento farmacológico , Melanoma/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Insulinas/uso terapéutico , Senescencia Celular/genética , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/uso terapéutico
7.
Front Bioinform ; 3: 1189723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325771

RESUMEN

Computational modeling has emerged as a critical tool in investigating the complex molecular processes involved in biological systems and diseases. In this study, we apply Boolean modeling to uncover the molecular mechanisms underlying Parkinson's disease (PD), one of the most prevalent neurodegenerative disorders. Our approach is based on the PD-map, a comprehensive molecular interaction diagram that captures the key mechanisms involved in the initiation and progression of PD. Using Boolean modeling, we aim to gain a deeper understanding of the disease dynamics, identify potential drug targets, and simulate the response to treatments. Our analysis demonstrates the effectiveness of this approach in uncovering the intricacies of PD. Our results confirm existing knowledge about the disease and provide valuable insights into the underlying mechanisms, ultimately suggesting potential targets for therapeutic intervention. Moreover, our approach allows us to parametrize the models based on omics data for further disease stratification. Our study highlights the value of computational modeling in advancing our understanding of complex biological systems and diseases, emphasizing the importance of continued research in this field. Furthermore, our findings have potential implications for the development of novel therapies for PD, which is a pressing public health concern. Overall, this study represents a significant step forward in the application of computational modeling to the investigation of neurodegenerative diseases, and underscores the power of interdisciplinary approaches in tackling challenging biomedical problems.

8.
Protein Sci ; 32(2): e4565, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36648161

RESUMEN

Protein function is often interpreted using molecular interaction diagrams, encoding roles a given protein plays in various molecular mechanisms. Information about disease-related mechanisms can be inferred from disease maps, knowledge repositories containing manually constructed systems biology diagrams. Disease maps hosted on the Molecular Interaction Network VisuAlization (MINERVA) Platform are individually accessible through a REST API interface of each instance, making it challenging to systematically explore their contents. To address this challenge, we introduce the MINERVA Net web service, a repository of open-access disease maps allowing users to publicly share minimal information about their maps. The MINERVA Net repository provides REST API endpoints of particular disease maps, which then can be individually queried for content. In this article, we describe the concept of MINERVA Net and illustrate its use by comparing proteins and their interactions in three different disease maps.


Asunto(s)
Proteínas , Biología de Sistemas , Proteínas/genética , Programas Informáticos
9.
Front Immunol ; 14: 1282859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38414974

RESUMEN

Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results: Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion: The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Reposicionamiento de Medicamentos , Biología de Sistemas , Simulación por Computador
10.
Cell Host Microbe ; 30(9): 1201-1206, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36108612

RESUMEN

The human gut microbiome produces a functional complex of biomolecules, including nucleic acids, (poly)peptides, structural molecules, and metabolites. This impacts human physiology in multiple ways, especially by triggering inflammatory pathways in disease. At present, much remains to be learned about the identity of key effectors and their causal roles.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ácidos Nucleicos , Humanos , Microbiota/fisiología
11.
Cell Host Microbe ; 30(9): 1340-1340.e1, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36108614

RESUMEN

The human gut microbiome is intricately connected to health and disease. Microbiome-derived molecules are implicated in many chronic diseases involving inflammation. Herein, we summarize the diverse complex of such immunogenic molecules, including nucleic acids, (poly)peptides, structural molecules, and metabolites. The interactions between this "expobiome" and human immune pathways are specifically illustrated in the context of chronic diseases. To view this SnapShot, open or download the PDF.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Inflamación
12.
Comput Struct Biotechnol J ; 20: 3161-3172, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782730

RESUMEN

Molecular mechanisms of health and disease are often represented as systems biology diagrams, and the coverage of such representation constantly increases. These static diagrams can be transformed into dynamic models, allowing for in silico simulations and predictions. Boolean modelling is an approach based on an abstract representation of the system. It emphasises the qualitative modelling of biological systems in which each biomolecule can take two possible values: zero for absent or inactive, one for present or active. Because of this approximation, Boolean modelling is applicable to large diagrams, allowing to capture their dynamic properties. We review Boolean models of disease mechanisms and compare a range of methods and tools used for analysis processes. We explain the methodology of Boolean analysis focusing on its application in disease modelling. Finally, we discuss its practical application in analysing signal transduction and gene regulatory pathways in health and disease.

13.
Br J Dermatol ; 187(4): 494-506, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35606928

RESUMEN

BACKGROUND: Responses to the systemic treatments commonly used to treat psoriasis vary. Biomarkers that accurately predict effectiveness and safety would enable targeted treatment selection, improved patient outcomes and more cost-effective healthcare. OBJECTIVES: To perform a scoping review to identify and catalogue candidate biomarkers of systemic treatment response in psoriasis for the translational research community. METHODS: A systematic search of CENTRAL, Embase, LILACS and MEDLINE was performed for relevant articles published between 1990 and December 2021. Eligibility criteria were studies involving patients with psoriasis (any age, n ≥ 50) reporting biomarkers associated with systemic treatment response. The main outcomes were any measure of systemic treatment efficacy or safety. Data were extracted by one reviewer and checked by a second; studies meeting minimal quality criteria (use of methods to control for confounding) were formally assessed for bias. Candidate biomarkers were identified by an expert multistakeholder group using a majority voting consensus exercise and mapped to relevant cellular and molecular pathways. RESULTS: Of 71 included studies (67 studying effectiveness outcomes and eight safety outcomes; four studied both), most reported genomic or proteomic biomarkers associated with response to biologics (48 studies). Methodological or reporting limitations frequently compromised the interpretation of findings, including inadequate control for key covariates, lack of adjustment for multiple testing, and selective outcome reporting. We identified candidate biomarkers of efficacy to tumour necrosis factor inhibitors [variation in CARD14, CDKAL1, IL1B, IL12B and IL17RA loci, and lipopolysaccharide-induced phosphorylation of nuclear factor (NF)-κB in type 2 dendritic cells] and ustekinumab (HLA-C*06:02 and variation in an IL1B locus). None were supported by sufficient evidence for clinical use without further validation studies. Candidate biomarkers were found to be involved in the immune cellular crosstalk implicated in psoriasis pathogenesis, most notably antigen presentation, T helper (Th)17 cell differentiation, positive regulation of NF-κB, and Th17 cell activation. CONCLUSIONS: This comprehensive catalogue provides a key resource for researchers and reveals a diverse range of biomarker types and outcomes in the included studies. The candidate biomarkers identified require further evaluation in methodologically robust studies to establish potential clinical utility. Future studies should aim to address the common methodological limitations highlighted in this review to expedite discovery and validation of biomarkers for clinical use. What is already known about this topic? Responses to the systemic treatments commonly used to treat psoriasis vary. Biomarkers that accurately predict effectiveness and safety would enable targeted treatment selection, improved patient outcomes and more cost-effective healthcare. What does this study add? This review provides a comprehensive catalogue of investigated biomarkers of systemic treatment response in psoriasis. A diverse range of biomarker types and outcomes was found in the included studies, serving as a key resource for the translational research community.


Asunto(s)
Productos Biológicos , Psoriasis , Productos Biológicos/uso terapéutico , Biomarcadores , Proteínas Adaptadoras de Señalización CARD , Guanilato Ciclasa , Antígenos HLA-C , Humanos , Lipopolisacáridos , Proteínas de la Membrana , FN-kappa B , Proteómica , Psoriasis/terapia , Inhibidores del Factor de Necrosis Tumoral , Ustekinumab/uso terapéutico
14.
Br J Dermatol ; 187(4): 481-493, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35482474

RESUMEN

BACKGROUND: Identification of those at risk of more severe psoriasis and/or associated morbidities offers opportunity for early intervention, reduced disease burden and more cost-effective healthcare. Prognostic biomarkers of disease progression have thus been the focus of intense research, but none are part of routine practice. OBJECTIVES: To identify and catalogue candidate biomarkers of disease progression in psoriasis for the translational research community. METHODS: A systematic search of CENTRAL, Embase, LILACS and MEDLINE was performed for relevant articles published between 1990 and December 2021. Eligibility criteria were studies involving patients with psoriasis (any age, n ≥ 50) reporting biomarkers associated with disease progression. The main outcomes were any measure of skin severity or any prespecified psoriasis comorbidity. Data were extracted by one reviewer and checked by a second; studies meeting minimal quality criteria (longitudinal design and/or use of methods to control for confounding) were formally assessed for bias. Candidate biomarkers were identified by an expert multistakeholder group using a majority voting consensus exercise, and mapped to relevant cellular and molecular pathways. RESULTS: Of 181 included studies, most investigated genomic or proteomic biomarkers associated with disease severity (n = 145) or psoriatic arthritis (n = 30). Methodological and reporting limitations compromised interpretation of findings, most notably a lack of longitudinal studies, and inadequate control for key prognostic factors. The following candidate biomarkers with future potential utility were identified for predicting disease severity: LCE3D, interleukin (IL)23R, IL23A, NFKBIL1 loci, HLA-C*06:02 (genomic), IL-17A, IgG aHDL, GlycA, I-FABP and kallikrein 8 (proteomic), tyramine (metabolomic); psoriatic arthritis: HLA-C*06:02, HLA-B*27, HLA-B*38, HLA-B*08, and variation at the IL23R and IL13 loci (genomic); IL-17A, CXCL10, Mac-2 binding protein, integrin b5, matrix metalloproteinase-3 and macrophage-colony stimulating factor (proteomic) and tyramine and mucic acid (metabolomic); and type 2 diabetes mellitus: variation in IL12B and IL23R loci (genomic). No biomarkers were supported by sufficient evidence for clinical use without further validation. CONCLUSIONS: This review provides a comprehensive catalogue of investigated biomarkers of disease progression in psoriasis. Future studies must address the common methodological limitations identified herein to expedite discovery and validation of biomarkers for clinical use. What is already known about this topic? The current treatment paradigm in psoriasis is reactive. There is a need to develop effective risk-stratified management approaches that can proactively attenuate the substantial burden of disease. Prognostic biomarkers of disease progression have therefore been the focus of intense research. What does this study add? This review is the first to scope, collate and catalogue research investigating biomarkers of disease progression in psoriasis. The review identifies potentially promising candidate biomarkers for further investigation and highlights common important limitations that should be considered when designing and conducting future studies in this area.


Asunto(s)
Artritis Psoriásica , Diabetes Mellitus Tipo 2 , Psoriasis , Artritis Psoriásica/diagnóstico , Artritis Psoriásica/genética , Biomarcadores/metabolismo , Factores Estimulantes de Colonias , Progresión de la Enfermedad , Antígenos HLA-C/genética , Humanos , Inmunoglobulina G , Integrinas , Interleucina-13 , Interleucina-17 , Interleucinas , Calicreínas , Proteómica , Psoriasis/genética , Tiramina
15.
Glia ; 70(5): 935-960, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35092321

RESUMEN

A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α-synuclein. Alpha-synuclein (α-syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α-syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α-syn induced by striatal injection of α-syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α-syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α-syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α-syn inclusion formation is not the major driver in the early phases of PD-like neurodegeneration, but that microglia, activated by diffusible, oligomeric α-syn, may play a key role in this process. Our findings uncover new features of α-syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α-syn spreading.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
16.
F1000Res ; 112022.
Artículo en Inglés | MEDLINE | ID: mdl-36742342

RESUMEN

In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR's future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives.


Asunto(s)
Biología de Sistemas , Europa (Continente) , Bases de Datos Factuales
18.
Sci Rep ; 11(1): 22223, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782688

RESUMEN

Cystic fibrosis (CF) is a life-threatening autosomal recessive disease caused by more than 2100 mutations in the CF transmembrane conductance regulator (CFTR) gene, generating variability in disease severity among individuals with CF sharing the same CFTR genotype. Systems biology can assist in the collection and visualization of CF data to extract additional biological significance and find novel therapeutic targets. Here, we present the CyFi-MAP-a disease map repository of CFTR molecular mechanisms and pathways involved in CF. Specifically, we represented the wild-type (wt-CFTR) and the F508del associated processes (F508del-CFTR) in separate submaps, with pathways related to protein biosynthesis, endoplasmic reticulum retention, export, activation/inactivation of channel function, and recycling/degradation after endocytosis. CyFi-MAP is an open-access resource with specific, curated and continuously updated information on CFTR-related pathways available online at https://cysticfibrosismap.github.io/ . This tool was developed as a reference CF pathway data repository to be continuously updated and used worldwide in CF research.


Asunto(s)
Biomarcadores , Fibrosis Quística/etiología , Fibrosis Quística/metabolismo , Bases de Datos Genéticas , Susceptibilidad a Enfermedades , Transducción de Señal , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Programas Informáticos , Navegador Web
19.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34664389

RESUMEN

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Asunto(s)
COVID-19/inmunología , Biología Computacional/métodos , Bases de Datos Factuales , SARS-CoV-2/inmunología , Programas Informáticos , Antivirales/uso terapéutico , COVID-19/genética , COVID-19/virología , Gráficos por Computador , Citocinas/genética , Citocinas/inmunología , Minería de Datos/estadística & datos numéricos , Regulación de la Expresión Génica , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/virología , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Células Mieloides/virología , Mapeo de Interacción de Proteínas , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Tratamiento Farmacológico de COVID-19
20.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33834185

RESUMEN

Detailed maps of the molecular basis of the disease are powerful tools for interpreting data and building predictive models. Modularity and composability are considered necessary network features for large-scale collaborative efforts to build comprehensive molecular descriptions of disease mechanisms. An effective way to create and manage large systems is to compose multiple subsystems. Composable network components could effectively harness the contributions of many individuals and enable teams to seamlessly assemble many individual components into comprehensive maps. We examine manually built versions of the RAS-RAF-MEK-ERK cascade from the Atlas of Cancer Signalling Network, PANTHER and Reactome databases and review them in terms of their reusability and composability for assembling new disease models. We identify design principles for managing complex systems that could make it easier for investigators to share and reuse network components. We demonstrate the main challenges including incompatible levels of detail and ambiguous representation of complexes and highlight the need to address these challenges.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Sistema de Señalización de MAP Quinasas , Neoplasias/metabolismo , Quinasas raf/metabolismo , Proteínas ras/metabolismo , Minería de Datos/métodos , Humanos , Internet , Modelos Biológicos , Fosforilación , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...