Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
N Engl J Med ; 389(5): 393-405, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37530822

RESUMEN

BACKGROUND: The NaV1.8 voltage-gated sodium channel, expressed in peripheral nociceptive neurons, plays a role in transmitting nociceptive signals. The effect of VX-548, an oral, highly selective inhibitor of NaV1.8, on control of acute pain is being studied. METHODS: After establishing the selectivity of VX-548 for NaV1.8 inhibition in vitro, we conducted two phase 2 trials involving participants with acute pain after abdominoplasty or bunionectomy. In the abdominoplasty trial, participants were randomly assigned in a 1:1:1:1 ratio to receive one of the following over a 48-hour period: a 100-mg oral loading dose of VX-548, followed by a 50-mg maintenance dose every 12 hours (the high-dose group); a 60-mg loading dose of VX-548, followed by a 30-mg maintenance dose every 12 hours (the middle-dose group); hydrocodone bitartrate-acetaminophen (5 mg of hydrocodone bitartrate and 325 mg of acetaminophen every 6 hours); or oral placebo every 6 hours. In the bunionectomy trial, participants were randomly assigned in a 2:2:1:2:2 ratio to receive one of the following over a 48-hour treatment period: oral high-dose VX-548; middle-dose VX-548; low-dose VX-548 (a 20-mg loading dose, followed by a 10-mg maintenance dose every 12 hours); oral hydrocodone bitartrate-acetaminophen (5 mg of hydrocodone bitartrate and 325 mg of acetaminophen every 6 hours); or oral placebo every 6 hours. The primary end point was the time-weighted sum of the pain-intensity difference (SPID) over the 48-hour period (SPID48), a measure derived from the score on the Numeric Pain Rating Scale (range, 0 to 10; higher scores indicate greater pain) at 19 time points after the first dose of VX-548 or placebo. The main analysis compared each dose of VX-548 with placebo. RESULTS: A total of 303 participants were enrolled in the abdominoplasty trial and 274 in the bunionectomy trial. The least-squares mean difference between the high-dose VX-548 and placebo groups in the time-weighted SPID48 was 37.8 (95% confidence interval [CI], 9.2 to 66.4) after abdominoplasty and 36.8 (95% CI, 4.6 to 69.0) after bunionectomy. In both trials, participants who received lower doses of VX-548 had results similar to those with placebo. Headache and constipation were common adverse events with VX-548. CONCLUSIONS: As compared with placebo, VX-548 at the highest dose, but not at lower doses, reduced acute pain over a period of 48 hours after abdominoplasty or bunionectomy. VX-548 was associated with adverse events that were mild to moderate in severity. (Funded by Vertex Pharmaceuticals; VX21-548-101 and VX21-548-102 ClinicalTrials.gov numbers, NCT04977336 and NCT05034952.).


Asunto(s)
Acetaminofén , Dolor Agudo , Humanos , Acetaminofén/uso terapéutico , Hidrocodona/efectos adversos , Dolor Agudo/tratamiento farmacológico , Analgésicos Opioides/uso terapéutico , Dolor Postoperatorio/tratamiento farmacológico , Analgésicos/uso terapéutico , Método Doble Ciego
2.
Proc Natl Acad Sci U S A ; 114(26): 6836-6841, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28607094

RESUMEN

The Nav1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Nav) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Nav1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Nav channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Nav1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Nav1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Nav1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Nav1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Nav channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Nav1.1 function.


Asunto(s)
Acetamidas/farmacología , Activación del Canal Iónico/efectos de los fármacos , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Venenos de Araña/farmacología , Arañas/química , Tiazoles/farmacología , Animales , Humanos , Activación del Canal Iónico/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Dominios Proteicos , Venenos de Araña/química , Xenopus laevis
3.
Nature ; 534(7608): 494-9, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27281198

RESUMEN

Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Nocicepción/efectos de los fármacos , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Venenos de Araña/farmacología , Estrés Mecánico , Animales , Modelos Animales de Enfermedad , Femenino , Ganglios Sensoriales/citología , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Síndrome del Colon Irritable/metabolismo , Masculino , Vaina de Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/química , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/metabolismo , Oocitos/metabolismo , Dolor/inducido químicamente , Dolor/metabolismo , Estructura Terciaria de Proteína , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Arañas/química , Especificidad por Sustrato/efectos de los fármacos , Temperatura
4.
Proc Natl Acad Sci U S A ; 109(18): 7103-8, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22509038

RESUMEN

KCNQ1 (Kv7.1) is a unique member of the superfamily of voltage-gated K(+) channels in that it displays a remarkable range of gating behaviors tuned by coassembly with different ß subunits of the KCNE family of proteins. To better understand the basis for the biophysical diversity of KCNQ1 channels, we here investigate the basis of KCNQ1 gating in the absence of ß subunits using voltage-clamp fluorometry (VCF). In our previous study, we found the kinetics and voltage dependence of voltage-sensor movements are very similar to those of the channel gate, as if multiple voltage-sensor movements are not required to precede gate opening. Here, we have tested two different hypotheses to explain KCNQ1 gating: (i) KCNQ1 voltage sensors undergo a single concerted movement that leads to channel opening, or (ii) individual voltage-sensor movements lead to channel opening before all voltage sensors have moved. Here, we find that KCNQ1 voltage sensors move relatively independently, but that the channel can conduct before all voltage sensors have activated. We explore a KCNQ1 point mutation that causes some channels to transition to the open state even in the absence of voltage-sensor movement. To interpret these results, we adopt an allosteric gating scheme wherein KCNQ1 is able to transition to the open state after zero to four voltage-sensor movements. This model allows for widely varying gating behavior, depending on the relative strength of the opening transition, and suggests how KCNQ1 could be controlled by coassembly with different KCNE family members.


Asunto(s)
Activación del Canal Iónico , Canal de Potasio KCNQ1/metabolismo , Sitio Alostérico , Sustitución de Aminoácidos , Animales , Femenino , Humanos , Técnicas In Vitro , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
5.
Nat Commun ; 3: 706, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22426227

RESUMEN

The cardiac voltage-gated sodium channel (Na(V)1.5) underlies impulse conduction in the heart, and its depolarization-induced inactivation is essential in control of the duration of the QT interval of the electrocardiogram. Perturbation of Na(V)1.5 inactivation by drugs or inherited mutation can underlie and trigger cardiac arrhythmias. The carboxy terminus has an important role in channel inactivation, but complete structural information on its predicted structural domain is unknown. Here we measure interactions between the functionally critical distal carboxy terminus α-helix (H6) and the proximal structured EF-hand motif using transition-metal ion fluorescence resonance energy transfer. We measure distances at three loci along H6 relative to an intrinsic tryptophan, demonstrating the proximal-distal interaction in a contiguous carboxy terminus polypeptide. Using these data together with the existing Na(V)1.5 carboxy terminus nuclear magnetic resonance structure, we construct a model of the predicted structured region of the carboxy terminus. An arrhythmia-associated H6 mutant that impairs inactivation decreases fluorescence resonance energy transfer, indicating destabilization of the distal-proximal intramolecular interaction. These data provide a structural correlation to the pathological phenotype of the mutant channel.


Asunto(s)
Sistema de Conducción Cardíaco/fisiología , Síndrome de QT Prolongado/genética , Canales de Sodio/química , Canales de Sodio/genética , Secuencias de Aminoácidos , Membrana Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Corazón/fisiología , Humanos , Activación del Canal Iónico , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5 , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Canales de Sodio/metabolismo
6.
J Gen Physiol ; 139(2): 135-44, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22250012

RESUMEN

The I(Ks) potassium channel, critical to control of heart electrical activity, requires assembly of α (KCNQ1) and ß (KCNE1) subunits. Inherited mutations in either I(Ks) channel subunit are associated with cardiac arrhythmia syndromes. Two mutations (S140G and V141M) that cause familial atrial fibrillation (AF) are located on adjacent residues in the first membrane-spanning domain of KCNQ1, S1. These mutations impair the deactivation process, causing channels to appear constitutively open. Previous studies suggest that both mutant phenotypes require the presence of KCNE1. Here we found that despite the proximity of these two mutations in the primary protein structure, they display different functional dependence in the presence of KCNE1. In the absence of KCNE1, the S140G mutation, but not V141M, confers a pronounced slowing of channel deactivation and a hyperpolarizing shift in voltage-dependent activation. When coexpressed with KCNE1, both mutants deactivate significantly slower than wild-type KCNQ1/KCNE1 channels. The differential dependence on KCNE1 can be correlated with the physical proximity between these positions and KCNE1 as shown by disulfide cross-linking studies: V141C forms disulfide bonds with cysteine-substituted KCNE1 residues, whereas S140C does not. These results further our understanding of the structural relationship between KCNE1 and KCNQ1 subunits in the I(Ks) channel, and provide mechanisms for understanding the effects on channel deactivation underlying these two atrial fibrillation mutations.


Asunto(s)
Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cisteína/genética , Cisteína/metabolismo , Humanos , Cinética , Mutación/genética , Fenotipo , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Relación Estructura-Actividad
7.
J Physiol ; 589(Pt 24): 6093-104, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22025662

RESUMEN

Human embryonic stem cells (hESCs) are an important cellular model for studying ion channel function in the context of a human cardiac cell and will provide a wealth of information about both heritable arrhythmias and acquired electrophysiological disorders. However, detailed electrophysiological characterization of the important cardiac ion channels has been so far overlooked. Because mutations in the gene for the I(Ks) α subunit, KCNQ1, constitute the majority of long QT syndrome (LQT-1) cases, we have carried out a detailed biophysical analysis of this channel expressed in hESCs to establish baseline I(Ks) channel biophysical properties in cardiac myocytes derived from hESCs (hESC-CMs). I(Ks) channels are heteromultimeric proteins consisting of four identical α-subunits (KCNQ1) assembled with auxiliary ß-subunits (KCNE1). We found that the half-maximal I(Ks) activation voltage in hESC-CMs and in myocytes derived from human induced pluripotent stems cells (hiPSC-CMs) falls between that of KCNQ1 channels expressed alone and with full complement of KCNE1, the major KCNE subunit expressed in hESC-CMs as shown by qPCR analysis. Overexpression of KCNE1 by transfection of hESC-CMs markedly shifted and slowed native I(Ks) activation implying assembly of additional KCNE1 subunits with endogenous channels. Our results in hESC-CMs, which indicate an I(Ks) subunit stoichiometry that can be altered by variable KCNE1 expression, suggest the possibility for variable I(Ks) function in the developing heart, in different tissues in the heart, and in disease. This establishes a new baseline for I(Ks) channel properties in myocytes derived from pluripotent stem cells and will guide future studies in patient-specific hiPSCs.


Asunto(s)
Canal de Potasio KCNQ1/fisiología , Miocitos Cardíacos/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Subunidades de Proteína/fisiología , Potenciales de Acción/fisiología , Línea Celular , Células Cultivadas , Caribdotoxina/farmacología , Citocinas/farmacología , Células Madre Embrionarias/citología , Fibroblastos/fisiología , Células HEK293 , Humanos , Neurotoxinas/farmacología
8.
Proc Natl Acad Sci U S A ; 107(52): 22710-5, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21149716

RESUMEN

The delayed rectifier I(Ks) potassium channel, formed by coassembly of α- (KCNQ1) and ß- (KCNE1) subunits, is essential for cardiac function. Although KCNE1 is necessary to reproduce the functional properties of the native I(Ks) channel, the mechanism(s) through which KCNE1 modulates KCNQ1 is unknown. Here we report measurements of voltage sensor movements in KCNQ1 and KCNQ1/KCNE1 channels using voltage clamp fluorometry. KCNQ1 channels exhibit indistinguishable voltage dependence of fluorescence and current signals, suggesting a one-to-one relationship between voltage sensor movement and channel opening. KCNE1 coexpression dramatically separates the voltage dependence of KCNQ1/KCNE1 current and fluorescence, suggesting an imposed requirement for movements of multiple voltage sensors before KCNQ1/KCNE1 channel opening. This work provides insight into the mechanism by which KCNE1 modulates the I(Ks) channel and presents a mechanism for distinct ß-subunit regulation of ion channel proteins.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Transducción de Señal/fisiología , Algoritmos , Animales , Femenino , Fluorometría/métodos , Humanos , Activación del Canal Iónico/genética , Canal de Potasio KCNQ1/genética , Potenciales de la Membrana , Microinyecciones , Modelos Biológicos , Mutación , Oocitos/metabolismo , Oocitos/fisiología , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/genética , ARN Complementario/administración & dosificación , ARN Complementario/genética , Transducción de Señal/genética , Xenopus laevis
10.
Biophys J ; 95(10): 4668-75, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18658230

RESUMEN

The CLC family of chloride channels and transporters is a functionally diverse group of proteins important in a wide range of physiological processes. ClC-4 and ClC-5 are localized to endosomes and seem to play roles in the acidification of these compartments. These proteins were recently shown to function as Cl(-)/H(+) antiporters. However, relatively little is known about the detailed mechanism of CLC-mediated Cl(-)/H(+) antiport, especially for mammalian isoforms. We attempted to identify molecular tools that might be useful in probing structure-function relationships in these proteins. Here, we record currents from human ClC-4 (hClC-4) expressed in Xenopus oocytes, and find that Zn(2+) inhibits these currents, with an apparent affinity of approximately 50 microM. Although Cd(2+) has a similar effect, Co(2+) and Mn(2+) do not inhibit hClC-4 currents. In contrast, the effect of Zn(2+) on the ClC-0 channel, Zn(2+)-mediated inhibition of hClC-4 is minimally voltage-dependent, suggesting an extracellular binding site for the ion. Nine candidate external residues were tested; only mutations of three consecutive histidine residues, located in a single extracellular loop, significantly reduced the effect of Zn(2+), with one of these making a larger contribution than the other two. An analogous tri-His sequence is absent from ClC-0, suggesting a fundamentally different inhibitory mechanism for the ion on hClC-4. Manipulations that alter transport properties of hClC-4, varying permeant ions as well as mutating the "gating glutamate", dramatically affect Zn(2+) inhibition, suggesting the involvement of a heretofore unexplored part of the protein in the transport process.


Asunto(s)
Canales de Cloruro/fisiología , Cloro/metabolismo , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Oocitos/fisiología , Zinc/administración & dosificación , Animales , Canales de Cloruro/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...