Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microsc ; 280(2): 158-173, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32700322

RESUMEN

The plant Golgi apparatus is responsible for the processing of proteins received from the endoplasmic reticulum (ER) and their distribution to multiple destinations within the cell. Golgi matrix components, such as golgins, have been identified and suggested to function as putative tethering factors to mediate the physical connections between Golgi bodies and the ER network. Golgins are proteins anchored to the Golgi membrane by the C-terminus either through transmembrane domains or interaction with small regulatory GTPases. The golgin N-terminus contains long coiled-coil domains, which consist of a number of α-helices wrapped around each other to form a structure similar to a rope being made from several strands, reaching into the cytoplasm. In animal cells, golgins are also implicated in specific recognition of cargo at the Golgi.Here, we investigate the plant golgin Atgolgin-84A for its subcellular localization and potential role as a tethering factor at the ER-Golgi interface. For this, fluorescent fusions of Atgolgin-84A and an Atgolgin-84A truncation lacking the coiled-coil domains (Atgolgin-84AΔ1-557) were transiently expressed in tobacco leaf epidermal cells and imaged using high-resolution confocal microscopy. We show that Atgolgin-84A localizes to a pre-cis-Golgi compartment that is also labelled by one of the COPII proteins as well as by the tether protein AtCASP. Upon overexpression of Atgolgin-84A or its deletion mutant, transport between the ER and Golgi bodies is impaired and cargo proteins are redirected to the vacuole. LAY DESCRIPTION: The Golgi apparatus is a specialised compartment found in mammalian and plant cells. It is the post office of the cell and packages proteins into small membrane boxes for transport to their destination in the cell. The plant Golgi apparatus consist of many separate Golgi bodies and is responsible for the processing of proteins received from the endoplasmic reticulum (ER) and their distribution to multiple destinations within the cell. Specialised proteins called golgins have been suggested to tether Golgi bodies and the ER. Here we investigate the plant golgin Atgolgin-84A for its exact within the Golgi body and its potential role as a tethering factor at the ER-Golgi interface. For this, we have fused Atgolgin-84A with a fluorescent protein from jellyfish and we are producing this combination in tobacco leaf cells. This allows us to see the protein using laser microscopy. We show that Atgolgin-84A localises to a compartment between the ER and Golgi that is also labelled by the tether protein AtCASP. When Atgolgin-84A is produced in high amounts in the cell, transport between the ER and Golgi bodies is inhibited and proteins are redirected to the vacuole.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Arabidopsis/química , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/química , Brefeldino A/farmacología , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/química , Aparato de Golgi/ultraestructura , Proteínas de la Matriz de Golgi/análisis , Proteínas de la Matriz de Golgi/química , Dominios Proteicos , Transporte de Proteínas
2.
J Microsc ; 247(1): 68-77, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22591132

RESUMEN

As plant Golgi bodies move through the cell along the actin cytoskeleton, they face the need to maintain their polarized stack structure whilst receiving, processing and distributing protein cargo destined for secretion. Structural proteins, or Golgi matrix proteins, help to hold cisternae together and tethering factors direct cargo carriers to the correct target membranes. This review focuses on golgins, a protein family containing long coiled-coil regions, summarizes their known functions in animal cells and highlights recent findings about plant golgins and their putative roles in the plant secretory pathway.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/ultraestructura , Modelos Biológicos , Plantas/ultraestructura , Unión Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...