Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Physiol ; 602(6): 1147-1174, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377124

RESUMEN

Viscerosensory information travels to the brain via vagal afferents, where it is first integrated within the brainstem nucleus tractus solitarii (nTS), a critical contributor to cardiorespiratory function and site of neuroplasticity. We have shown that decreasing input to the nTS via unilateral vagus nerve transection (vagotomy) induces morphological changes in nTS glia and reduces sighs during hypoxia. The mechanisms behind post-vagotomy changes are not well understood. We hypothesized that chronic vagotomy alters cardiorespiratory responses to vagal afferent stimulation via blunted nTS neuronal activity. Male Sprague-Dawley rats (6 weeks old) underwent right cervical vagotomy caudal to the nodose ganglion, or sham surgery. After 1 week, rats were anaesthetized, ventilated and instrumented to measure mean arterial pressure (MAP), heart rate (HR), and splanchnic sympathetic and phrenic nerve activity (SSNA and PhrNA, respectively). Vagal afferent stimulation (2-50 Hz) decreased cardiorespiratory parameters and increased neuronal Ca2+ measured by in vivo photometry and in vitro slice imaging of nTS GCaMP8m. Vagotomy attenuated both these reflex and neuronal Ca2+ responses compared to shams. Vagotomy also reduced presynaptic Ca2+ responses to stimulation (Cal-520 imaging) in the nTS slice. The decrease in HR, SSNA and PhrNA due to nTS nanoinjection of exogenous glutamate also was tempered following vagotomy. This effect was not restored by blocking excitatory amino acid transporters. However, the blunted responses were mimicked by NMDA, not AMPA, nanoinjection and were associated with reduced NR1 subunits in the nTS. Altogether, these results demonstrate that vagotomy induces multiple changes within the nTS tripartite synapse that influence cardiorespiratory reflex responses to afferent stimulation. KEY POINTS: Multiple mechanisms within the nucleus tractus solitarii (nTS) contribute to functional changes following vagal nerve transection. Vagotomy results in reduced cardiorespiratory reflex responses to vagal afferent stimulation and nTS glutamate nanoinjection. Blunted responses occur via reduced presynaptic Ca2+ activation and attenuated NMDA receptor expression and function, leading to a reduction in nTS neuronal activation. These results provide insight into the control of autonomic and respiratory function, as well as the plasticity that can occur in response to nerve damage and cardiorespiratory disease.


Asunto(s)
Neuronas , Núcleo Solitario , Ratas , Masculino , Animales , Núcleo Solitario/fisiología , Ratas Sprague-Dawley , Neuronas/fisiología , Vagotomía , Nervio Vago/fisiología , Ácido Glutámico/farmacología , Ácido Glutámico/metabolismo
2.
Front Physiol ; 14: 1120341, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846346

RESUMEN

Exposure to acute intermittent hypoxia (AIH) induces prolonged increases (long term facilitation, LTF) in phrenic and sympathetic nerve activity (PhrNA, SNA) under basal conditions, and enhanced respiratory and sympathetic responses to hypoxia. The mechanisms and neurocircuitry involved are not fully defined. We tested the hypothesis that the nucleus tractus solitarii (nTS) is vital to augmentation of hypoxic responses and the initiation and maintenance of elevated phrenic (p) and splanchnic sympathetic (s) LTF following AIH. nTS neuronal activity was inhibited by nanoinjection of the GABAA receptor agonist muscimol before AIH exposure or after development of AIH-induced LTF. AIH but not sustained hypoxia induced pLTF and sLTF with maintained respiratory modulation of SSNA. nTS muscimol before AIH increased baseline SSNA with minor effects on PhrNA. nTS inhibition also markedly blunted hypoxic PhrNA and SSNA responses, and prevented altered sympathorespiratory coupling during hypoxia. Inhibiting nTS neuronal activity before AIH exposure also prevented the development of pLTF during AIH and the elevated SSNA after muscimol did not increase further during or following AIH exposure. Furthermore, nTS neuronal inhibition after the development of AIH-induced LTF substantially reversed but did not eliminate the facilitation of PhrNA. Together these findings demonstrate that mechanisms within the nTS are critical for initiation of pLTF during AIH. Moreover, ongoing nTS neuronal activity is required for full expression of sustained elevations in PhrNA following exposure to AIH although other regions likely also are important. Together, the data indicate that AIH-induced alterations within the nTS contribute to both the development and maintenance of pLTF.

3.
Brain Res ; 1801: 148202, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36521513

RESUMEN

Obstructive sleep apnea is highly prevalent in Alzheimer's disease (AD). However, brainstem centers controlling respiration have received little attention in AD research, and mechanisms behind respiratory dysfunction in AD are not understood. The nucleus tractus solitarii (nTS) is an important brainstem center for respiratory control and chemoreflex function. Alterations of nTS integrity, like those shown in AD patients, likely affect neuronal processing and adequate control of breathing. We used the streptozotocin-induced rat model of AD (STZ-AD) to analyze cellular changes in the nTS that corroborate previously documented respiratory dysfunction. We used 2 common dosages of STZ (2 and 3 mg/kg STZ) for model induction and evaluated the early impact on cell populations in the nTS. The hippocampus served as control region to identify site-specific effects of STZ. There was significant atrophy in the caudal nTS of the 3 mg/kg STZ-AD group only, an area known to integrate chemoafferent information. Also, the hippocampus had significant atrophy with the highest STZ dosage tested. Both STZ-AD groups showed respiratory dysfunction along with multiple indices for astroglial and microglial activation. These changes were primarily located in the caudal and intermediate nTS. While there was no change of astrocytes in the hippocampus, microglial activation was accompanied by a reduction in synaptic density. Together, our data demonstrate that STZ-AD induces site-specific effects on all major cell types, primarily in the caudal/intermediate nTS. Both STZ dosages used in this study produced a similar outcome and can be used for future studies examining the initial symptoms of STZ-AD.


Asunto(s)
Enfermedad de Alzheimer , Núcleo Solitario , Ratas , Animales , Núcleo Solitario/metabolismo , Estreptozocina/farmacología , Gliosis/inducido químicamente , Gliosis/metabolismo , Enfermedad de Alzheimer/metabolismo , Respiración
4.
J Alzheimers Dis ; 90(4): 1449-1464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278348

RESUMEN

BACKGROUND: Alzheimer's disease (AD) patients frequently present with orthostatic hypotension. This inability to reflexively increase blood pressure on standing is a serious health concern and increases the risk of stroke and cardiovascular diseases. OBJECTIVE: Since there are no clear mechanisms for orthostatic hypotension in human AD, the present study assessed the autonomic changes that could explain this comorbidity in an AD animal model. METHODS: We used the established streptozotocin-induced rat model of AD (STZ-AD), which mimics many hallmark symptoms of sporadic AD in humans. Baroreflex responses were analyzed in anesthetized STZ-AD rats using femoral catheterization for blood pressure and heart rate, and autonomic activity was assessed using specific blockers and splanchnic sympathetic nerve recordings. Expression levels of autonomic receptors at the heart were examined using the western blot technique. RESULTS: Baroreflex function in STZ-AD showed a blunted heart rate (HR) response to low blood pressure challenges, and the maximal sympathetic nerve activity was reduced. Conversely, HR responses to high blood pressure were similar to control, indicating no change in parasympathetic nerve activity. Under resting conditions, autonomic blockade demonstrated a baseline shift to increased sympathetic tone in STZ-AD. Protein expression levels of beta-1 adrenergic receptor and muscarinic acetylcholine receptor M2 in the heart were unchanged. CONCLUSION: Our study provides the first data on the pathological influence of AD on baroreflex function, which primarily affected the sympathetic nervous system in STZ-AD. These results represent the first mechanisms that may correlate with the orthostatic hypotension in human AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades del Sistema Nervioso Autónomo , Hipotensión Ortostática , Humanos , Ratas , Animales , Barorreflejo/fisiología , Enfermedades del Sistema Nervioso Autónomo/etiología , Sistema Nervioso Autónomo , Frecuencia Cardíaca/fisiología , Presión Sanguínea/fisiología , Modelos Animales de Enfermedad
5.
PLoS One ; 13(6): e0198702, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29883493

RESUMEN

Unsignaled stress can have profound effects on animal behavior. While most investigation of stress-effects on behavior follows chronic exposures, less is understood about acute exposures and potential after-effects. We examined walking activity in Drosophila following acute exposure to high temperature or electric shock. Compared to initial walking activity, flies first increase walking with exposure to high temperatures then have a strong reduction in activity. These effects are related to the intensity of the high temperature and number of exposures. The reduction in walking activity following high temperature and electric shock exposures survives context changes and lasts at least five hours. Reduction in the function of the biogenic amines octopamine / tyramine and serotonin both strongly blunt the increase in locomotor activity with high temperature exposure. However, neither set of biogenic amines alter the long lasting depression in walking activity after exposure.


Asunto(s)
Drosophila melanogaster/fisiología , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Locomoción/fisiología , Animales , Femenino , Masculino , Octopamina/metabolismo , Serotonina/metabolismo , Tiramina/metabolismo
6.
J Clin Med ; 7(2)2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29393890

RESUMEN

In addition to its regulatory function in the formation of red blood cells (erythropoiesis) in vertebrates, Erythropoietin (Epo) contributes to beneficial functions in a variety of non-hematopoietic tissues including the nervous system. Epo protects cells from apoptosis, reduces inflammatory responses and supports re-establishment of compromised functions by stimulating proliferation, migration and differentiation to compensate for lost or injured cells. Similar neuroprotective and regenerative functions of Epo have been described in the nervous systems of both vertebrates and invertebrates, indicating that tissue-protective Epo-like signaling has evolved prior to its erythropoietic function in the vertebrate lineage. Epo mediates its erythropoietic function through a homodimeric Epo receptor (EpoR) that is also widely expressed in the nervous system. However, identification of neuroprotective but non-erythropoietic Epo splice variants and Epo derivatives indicated the existence of other types of Epo receptors. In this review, we summarize evidence for potential Epo receptors that might mediate Epo's tissue-protective function in non-hematopoietic tissue, with focus on the nervous system. In particular, besides EpoR, we discuss three other potential neuroprotective Epo receptors: (1) a heteroreceptor consisting of EpoR and common beta receptor (ßcR), (2) the Ephrin (Eph) B4 receptor and (3) the human orphan cytokine receptor-like factor 3 (CRLF3).

7.
Front Syst Neurosci ; 11: 92, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29321732

RESUMEN

Feedback mechanisms in operant learning are critical for animals to increase reward or reduce punishment. However, not all conditions have a behavior that can readily resolve an event. Animals must then try out different behaviors to better their situation through outcome learning. This form of learning allows for novel solutions and with positive experience can lead to unexpected behavioral routines. Learned helplessness, as a type of outcome learning, manifests in part as increases in escape latency in the face of repeated unpredicted shocks. Little is known about the mechanisms of outcome learning. When fruit fly Drosophilamelanogaster are exposed to unpredicted high temperatures in a place learning paradigm, flies both increase escape latencies and have a higher memory when given control of a place/temperature contingency. Here we describe discrete serotonin neuronal circuits that mediate aversive reinforcement, escape latencies, and memory levels after place learning in the presence and absence of unexpected aversive events. The results show that two features of learned helplessness depend on the same modulatory system as aversive reinforcement. Moreover, changes in aversive reinforcement and escape latency depend on local neural circuit modulation, while memory enhancement requires larger modulation of multiple behavioral control circuits.

8.
Neurobiol Learn Mem ; 123: 217-24, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26143995

RESUMEN

Some memories last longer than others, with some lasting a lifetime. Using several approaches memory phases have been identified. How are these different phases encoded, and do these different phases have similar temporal properties across learning situations? Place memory in Drosophila using the heat-box provides an excellent opportunity to examine the commonalities of genetically-defined memory phases across learning contexts. Here we determine optimal conditions to test place memories that last up to three hours. An aversive temperature of 41°C was identified as critical for establishing a long-lasting place memory. Interestingly, adding an intermittent-training protocol only slightly increased place memory when intermediate aversive temperatures were used, and slightly extended the stability of a memory. Genetic analysis of this memory identified four genes as critical for place memory within minutes of training. The role of the rutabaga type I adenylyl cyclase was confirmed, and the latheo Orc3 origin of recognition complex component, the novel gene encoded by pastrel, and the small GTPase rac were all identified as essential for normal place memory. Examination of the dopamine and ecdysone receptor (DopEcR) did not reveal a function for this gene in place memory. When compared to the role of these genes in other memory types, these results suggest that there are genes that have both common and specific roles in memory formation across learning contexts. Importantly, contrasting the timing for the function of these four genes, plus a previously described role of the radish gene, in place memory with the temporal requirement of these genes in classical olfactory conditioning reveals variability in the timing of genetically-defined memory phases depending on the type of learning.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/fisiología , Memoria Espacial/fisiología , Adenilil Ciclasas , Animales , Proteínas de Unión al ADN , Mutación , Fenotipo , Refuerzo en Psicología , Retención en Psicología/fisiología , Temperatura
9.
J Neurophysiol ; 111(12): 2493-504, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24671532

RESUMEN

Serotonin (5-HT), and its 5-HT1A receptor (5-HT1AR) subtype, is a powerful modulator of the cardiorespiratory system and its sensory reflexes. The nucleus tractus solitarii (nTS) serves as the first central station for visceral afferent integration and is critical for cardiorespiratory reflex responses. However, the physiological and synaptic role of 5-HT1ARs in the nTS is relatively unknown. In the present study, we examined the distribution and modulation of 5-HT1ARs on cardiorespiratory and synaptic parameters in the nTS. 5-HT1ARs were widely distributed to cell bodies within the nTS but not synaptic terminals. In anesthetized rats, activation of 5-HT1ARs by microinjection of the 5-HT1AR agonist 8-OH-DPAT into the caudal nTS decreased minute phrenic neural activity via a reduction in phrenic amplitude. In brain stem slices, 8-OH-DPAT decreased the amplitude of glutamatergic tractus solitarii-evoked excitatory postsynaptic currents, and reduced overall spontaneous excitatory nTS network activity. These effects persisted in the presence of GABAA receptor blockade and were antagonized by coapplication of 5-HT1AR blocker WAY-100135. 5-HT1AR blockade alone had no effect on tractus solitarii-evoked excitatory postsynaptic currents, but increased excitatory network activity. On the other hand, GABAergic nTS-evoked inhibitory postsynaptic currents did not change by activation of the 5-HT1ARs, but spontaneous inhibitory nTS network activity decreased. Blocking 5-HT1ARs tended to increase nTS-evoked inhibitory postsynaptic currents and inhibitory network activity. Taken together, 5-HT1ARs in the caudal nTS decrease breathing, likely via attenuation of afferent transmission, as well as overall nTS network activity.


Asunto(s)
Ácido Glutámico/metabolismo , Nervio Frénico/fisiología , Receptor de Serotonina 5-HT1A/metabolismo , Respiración , Núcleo Solitario/fisiología , Ácido gamma-Aminobutírico/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas de Receptores de GABA-A/farmacología , Masculino , Nervio Frénico/efectos de los fármacos , Piperazinas/farmacología , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Respiración/efectos de los fármacos , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Antagonistas del Receptor de Serotonina 5-HT1/farmacología , Núcleo Solitario/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
10.
PLoS One ; 6(7): e22867, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21818402

RESUMEN

The genetic mechanisms that influence memory formation and sensitivity to the effects of ethanol on behavior in Drosophila have some common elements. So far, these have centered on the cAMP/PKA signaling pathway, synapsin and fas2-dependent processes, pumilio-dependent regulators of translation, and a few other genes. However, there are several genes that are important for one or the other behaviors, suggesting that there is an incomplete overlap in the mechanisms that support memory and ethanol sensitive behaviors. The basis for this overlap is far from understood. We therefore examined memory in arouser (aru) mutant flies, which have recently been identified as having ethanol sensitivity deficits. The aru mutant flies showed memory deficits in both short-term place memory and olfactory memory tests. Flies with a revertant aru allele had wild-type levels of memory performance, arguing that the aru gene, encoding an EPS8L3 product, has a role in Drosophila memory formation. Furthermore, and interestingly, flies with the aru(8-128) insertion allele had deficits in only one of two genetic backgrounds in place and olfactory memory tests. Flies with an aru imprecise excision allele had deficits in tests of olfactory memory. Quantitative measurements of aru EPS8L3 mRNA expression levels correlate decreased expression with deficits in olfactory memory while over expression is correlated with place memory deficits. Thus, mutations of the aru EPS8L3 gene interact with the alleles of a particular genetic background to regulate arouser expression and reveals a role of this gene in memory.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Arabidopsis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Genes de Insecto/genética , Memoria/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alelos , Animales , Proteínas de Arabidopsis/metabolismo , Conducta Animal , Proteínas de Drosophila , Regulación de la Expresión Génica , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Mutación/genética , Bulbo Olfatorio/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...