Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 159(24)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153149

RESUMEN

We have investigated, using molecular dynamics, the surface chemistry of hydrogen incident on the amorphous and crystalline lithium oxide and lithium hydroxide surfaces upon being slowed down by a collision cascade and retained in the amorphous surface of either Li2O or LiOH. We looked for the bonding of H to the resident structures in the surface to understand a possible chain of chemical reactions that can lead to surface transformation upon H atom impact. Our findings, using Density-Functional Theory (DFT) trained ReaxFF force field/electronegativity equalization method potentials, stress the importance of inclusion of polarization in the dynamics of a Li-O-H system, which is also illustrated by DFT energy minimization and quantum-classical molecular dynamics using tight binding DFT. The resulting polar-covalent chemistry of the studied systems is complex and very sensitive to the instantaneous positions of all atoms as well as the ratio of concentrations of various resident atoms in the surface.

2.
Rev Sci Instrum ; 91(2): 026104, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32113407

RESUMEN

We have demonstrated a vacuum suitcase to transport samples in vacuo to a surface analysis station for characterization of tokamak plasma facing components (PFCs). This technique enables surface analysis at powerful, dedicated stations that are not encumbered by design constraints imposed on them by a tokamak. The vacuum suitcase is an alternative solution to characterizing PFCs using diagnostics that are designed and built around a tokamak. The vacuum suitcase, called the Sample Exposure Probe (SEP), features mobile ultra-high vacuum pumping. Active pumping under high vacuum enables sample transfer between the Lithium Tokamak eXperiment-ß (LTX-ß) and a high resolution X-ray Photoelectron Spectroscopy (XPS) system that is situated close by. A thermocouple inserted in the back of the sample head measures heat flux from the plasma during exposure, and together with a button heater, allows the sample to match the LTX-ß PFCs in high temperature operations. As vacuum conditions are better during transfer and analysis than in the tokamak, less contamination is introduced to the samples. XPS scans on a dedicated analysis station enable peak identification due to higher resolution and signal to noise ratio. A similar probe could be implemented for other fusion devices. The SEP is the first vacuum suitcase implementation for fusion applications that incorporates active pumping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...