Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37158597

RESUMEN

The amoeba-resistant bacterium Legionella pneumophila causes Legionnaires' disease and employs a type IV secretion system (T4SS) to replicate in the unique, ER-associated Legionella-containing vacuole (LCV). The large fusion GTPase Sey1/atlastin is implicated in ER dynamics, ER-derived lipid droplet (LD) formation, and LCV maturation. Here, we employ cryo-electron tomography, confocal microscopy, proteomics, and isotopologue profiling to analyze LCV-LD interactions in the genetically tractable amoeba Dictyostelium discoideum. Dually fluorescence-labeled D. discoideum producing LCV and LD markers revealed that Sey1 as well as the L. pneumophila T4SS and the Ran GTPase activator LegG1 promote LCV-LD interactions. In vitro reconstitution using purified LCVs and LDs from parental or Δsey1 mutant D. discoideum indicated that Sey1 and GTP promote this process. Sey1 and the L. pneumophila fatty acid transporter FadL were implicated in palmitate catabolism and palmitate-dependent intracellular growth. Taken together, our results reveal that Sey1 and LegG1 mediate LD- and FadL-dependent fatty acid metabolism of intracellular L. pneumophila.


Asunto(s)
Dictyostelium , Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Humanos , Legionella pneumophila/metabolismo , GTP Fosfohidrolasas/metabolismo , Macrófagos/metabolismo , Dictyostelium/metabolismo , Gotas Lipídicas/metabolismo , Vacuolas/metabolismo , Legionella/metabolismo , Enfermedad de los Legionarios/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Microorganisms ; 8(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143252

RESUMEN

The antimicrobial peptide human Beta defensin 3 (hBD3) is an essential part of the innate immune system and is involved in protection against respiratory pathogens by specifically permeabilizing bacterial membranes. The Gram-positive bacterium Streptococcus pneumoniae causes serious diseases including pneumonia, meningitis, and septicemia, despite being frequently exposed to human defense molecules, including hBD3 during colonization and infection. Thus, the question arises how pneumococci adapt to stress caused by antimicrobial peptides. We addressed this subject by analyzing the proteome of S. pneumoniae after treatment with hBD3 and compared our data with the proteomic changes induced by LL-37, another crucial antimicrobial peptide present in the human respiratory tract. As antimicrobial peptides usually cause membrane perturbations, the response to the membrane active cationic detergent cetyltrimethylammonium bromide (CTAB) was examined to assess the specificity of the pneumococcal response to antimicrobial peptides. In brief, hBD3 and LL-37 induce a similar response in pneumococci and especially, changes in proteins with annotated transporter and virulence function have been identified. However, LL-37 causes changes in the abundance of cell surface modification proteins that cannot be observed after treatment with hBD3. Interestingly, CTAB induces unique proteomic changes in S. pneumoniae. Though, the detergent seems to activate a two-component system that is also activated in response to antimicrobial peptide stress (TCS 05). Overall, our data represent a novel resource on pneumococcal adaptation to specific cell surface stresses on a functional level. This knowledge can potentially be used to develop strategies to circumvent pneumococcal resistance to antimicrobial peptides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...